[1] HU J,ZHOU Q,JIANG P,et al.An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging[J].Engineering Optimization,2017(5):1-19.
[2] BUHMANN M D.Radial basis functions:theory and implementations[M].Cambridge,UK:Cambridge University Press,2003.
[3] MYERS R H,MONTGOMERY D C.Response surface methodology:process and product optimization using designed experiments[M].New York:Wiley,1995.
[4] STEIN M L.Interpolation of spatial data:some theory for kriging[M].Berlin:Springer-Verlag,1999.
[5] GUNN S R.Support vector machines for classification and regression[R].Southampton:Southampton University of Southampton.Image Speech and Intelligent Systems Research Group,1997.
[6] GOEL T,HAFTKA R T,SHYY W,et al.Ensemble of surrogates[J].Structural and Multi-disciplinary Optimization,2007,33(3):199-216.
[7] DONG H,SONG B,WANG P,et al.Hybrid surrogate-based optimization using space reduction(HSOSR) for expensive black-box functions[J].Applied Soft Computing,2018,64:641-655.
[8] YE P,PAN G,DONG Z.Ensemble of surrogate based global optimization methods using hierarchical design space reduction[J].Structural and Multi-disciplinary Optimization,2018:1-18.
[9] SINGH H K,RAY T,SMITH W.Surrogate assisted simulated annealing(SASA) for constrained multi-objective optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation,2010:1-8.
[10] LIM D,JIN Y.Generalizing surrogate-assisted evolutionary computation[J].IEEE Transactions on Evolutionary Computation,2010,14:329-354.
[11] MARTINEZ S Z,COELLO C A C.MOEA/D assisted by RBF networks for expensive multi-objective optimization problems[C]//Proceedings of the Genetic and Evolutionary Computation Conference,2013:1405-1412.
[12] ROSALES-PéREZ A,COELLO C A C,GONZALEZ J A,et al.A hybrid surrogate-based approach for evolutionary multi-objective optimization[C]//Proc IEEE Congress on Evolutionary Computation,Cancun,Mexico,2013:2548-2555.
[13] WANG H,JIN Y,DOHERTY J.Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J].IEEE Transactions on Cybernetics,2017,47(9):2664-2677.
[14] WANG Y,YIN D Q,YANG S.Global and local surrogate-assisted differential evolution for expensive constrained optimization[J].IEEE Transactions on Cybernetics,2018,99:1-15.
[15] WANG H,JIN Y,JANSON J O.Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system[J].IEEE Transactions on Evolutionary Computation,2016,20(6):939-952.
[16] WANG H,JIN Y,SUN C,et al.Offline data-driven evolutionary optimization using selective surrogate ensembles[J].IEEE Transactions on Evolutionary Computation,2019,23:203-216.
[17] AWAD N H,ALI M Z,MALLIPEDDI R.An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization[J].Information Sciences,2018:326-347.
[18] CAI X W,GAO L,LI X Y,et al.Surrogate-guided differential evolution algorithm for high dimensional expensive problems[J].Swarm and Evolutionary Computation,2019,48:288-311.
[19] EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science,1995:39-43.
[20] 余伟伟,谢承旺.一种多策略混合的粒子群优化算法[J].计算机科学,2018,45(S1):120-123.
YU Weiwei,XIE Chengwang.A multi-strategy hybrid particle swarm optimization algorithm[J].Computer Science,2018,45(S1):120-123.
[21] 周蓉,李俊,王浩.基于灰狼优化的反向学习粒子群算法[J].计算机工程与应用,2020,56(7):48-56.
ZHOU Rong,LI Jun,WANG Hao.Reverse learning particle swarm optimization based on grey wolf optimization[J].Computer Engineering and Applications,2020,56(7):48-56.
[22] 邓志诚,孙辉,赵嘉,等.具有动态子空间的随机单维变异粒子群算法[J].计算机科学与探索,2020,14(8):1409-1426.
DENG Zhicheng,SUN Hui,ZHAO Jia,et al.Stochastic single-dimensional mutated particle swarm optimization with dynamic subspace[J].Journal of Frontiers of Computer Science and Technology,2020,14(8):1409-1426.
[23] 魏锋涛,卢凤仪.融合核函数在改进径向基代理模型中的应用[J].计算机工程与应用,2019,55(7):58-65.
WEI Fengtao,LU Fengyi.Application of hybrid kernel function in improved radial basis function meta-model[J].Computer Engineering and Applications,2019,55(7):58-65.
[24] DíAZ-MANRíQUEZ A,TOSCANO G,COELLO C A.Comparison of metamodeling techniques in evolutionary algorithms[J].Soft Computing,2017,21:5647-5663.
[25] PARK J S.Optimal Latin-hypercube designs for computer experiments[J].Journal of Statistical Planning and Inference,1994,39(1):95-111.
[26] 周志华.机器学习[M].北京:清华大学出版社,2016.
ZHOU Zhihua.Machine learning[M].Beijing:Tsinghua University Press,2016.
[27] BROWN G,WYATT J L,T?NO P.Managing diversity in regression ensembles[J].J Mach Learn Res,2005,6:1621-1650.
[28] ZITZLER E,DEB K,THIELE L.Comparison of multi-objective evolutionary algorithms:empirical results[J].Evolutionary Computation,2000,8(2):173-195.
[29] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[30] SIERRA M R,COELLO C A C.Improving PSO-based multi-objective optimization using crowding,mutation and ?-dominance evolutionary multi-criterion optimization[C]//International Conference on Evolutionary Multi-Criterion Optimization,2005:505-519.
[31] 王刚成,马宁,顾解忡.基于Kriging代理模型的船舶水动力性能多目标快速协同优化[J].上海交通大学学报,2018,52(6):666-673.
WANG Gangcheng,MA Ning,GU Xiechong.Fast collaborative multi-objective optimization for hydrodynamic based on Kriging surrogate model[J].Journal of Shanghai Jiaotong University,2018,52(6):666-673.
[32] JIE H,WU Y,ZHAO J.et al.An efficient multi-objective PSO algorithm assisted by Kriging meta-model for expensive black-box problems[J].J Glob Optimization,2017,67:399-423.
[33] VAN VELDHUIZEN D A,LAMONT G B.Multi-objective evolutionary algorithm research:a history and analysis[J].Evolutionary Computation,1998,8(2):125-147.
[34] SCHOTT J R.Fault tolerant design using single and multi-criteria genetic algorithm optimization[D].Massachusetts Institute of Technology,1995.
[35] WHILE L,HINGSTON P,BARONE L,et al.A faster algorithm for calculating hyper-volume[J].IEEE Transactions on Evolutionary Computation,2006,10(1):29-38.