ZHAO Pengfei, LI Yanling, LIN Min. Intent Detection of Domain Adaptation Combined with Capsule Network[J]. Computer Engineering and Applications, 2021, 57(21): 188-194.
[1] 赵鹏飞,李艳玲,林民.面向迁移学习的意图识别研究进展[J].计算机科学与探索,2020,14(8):1261-1274.
ZHAO P F,LI Y L,LIN M.Research progress on intent detection oriented to transfer learning[J].Journal of Frontiers of Computer Science and Technology,2020,14(8):1261-1274.
[2] WU Y,ZHANG Z,WANG G.Unsupervised deep feature transfer for low resolution image classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,2019.
[3] CHEN E,MATHAI T S,SARODE V,et al.A study of domain generalization on ultrasound-based multi-class segmentation of arteries,veins,ligaments,and nerves using transfer learning[J].arXiv:2011.07019,2020.
[4] 杨志明,王来奇,王泳.基于双通道卷积神经网络的问句意图分类研究[J].中文信息学报,2019,33(5):122-131.
YANG Z M,WANG L Q,WANG Y.Questions intent classification based on dual channel convolutional neural network[J].Journal of Chinese Information Processing,2019,33(5):122-131.
[5] 杨志明,王来奇,王泳.深度学习算法在问句意图分类中的应用研究[J].计算机工程与应用,2019,55(10):154-160.
YANG Z M,WANG L Q,WANG Q.Application research of deep learning algorithm in questions intention classification[J].Computer Engineering and Applications,2019,55(10):154-160.
[6] 侯丽仙,李艳玲,林民,等.融合多约束条件的意图和语义槽填充联合识别[J].计算机科学与探索,2020,14(9):1545-1553.
HOU L X,LI Y L,LIN M,et al.Joint Recognition of intent and semantic slot filling combining multiple constraints[J].Journal of Frontiers of Computer Science and Technology,2020,14(9):1545-1553.
[7] 刘娇,李艳玲,林民.胶囊网络用于短文本多意图识别的研究[J].计算机科学与探索,2020,14(10):1735-1743.
LIU J,LI Y L,LIN M.Capsule network is used in the research of short text multi-intent detection[J].Journal of Frontiers of Computer Science and Technology,2020,14(10):1735-1743.
[8] 尹春勇,何苗.基于改进胶囊网络的文本分类[J].计算机应用,2020,40(9):2525-2530.
YIN C Y,HE M.Text classification based on improved capsule network[J].Journal of Computer Applications,2020,40(9):2525-2530.
[9] PAN S J,TSANG I W,KWOK J T.et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Network,2010,22(2):199-210.
[10] ZELLINGER W,GRUBINGER T,LUGHOFER E,et al.Central moment discrepancy(cmd) for domain-invariant representation learning[J].arXiv:1702.08811,2017.
[11] GOODFELLOW I J,JEAN P,MIRZA M,et al.Generative adversarial networks[J].arXiv:1406.2261,2014.
[12] AJAKAN H,GERMAIN P,LAROCHELLE H,et al.Domain-adversarial neural networks[J].arXiv:1412.4446,2014.
[13] GANIN Y,USTINOVA E,AJAKAN H,et al.Domain- adversarial training of neural network[J].arXiv:1505. 07818,2015.
[14] GRIEHABER D,VU N T,MAUCHER J.Low-resource text classification using domain-adversarial learning[J].arXiv:1807.05195v2,2020.
[15] COUCKE A,SAADE A,BALL A,et al.Snips voice platform:an embedded spoken language understanding system for private-by-design voice interfaces[J].arXiv:1805.10190,2018.
[16] HEMPHILL C T,GODFREY J J,DODDINGTON G R.The ATIS spoken language systems pilot corpus[C]//Speech and Natural Language:Proceedings of a Workshop Held at Hidden Valley,Pennsylvania,June 24-27,1990.
[17] ZHANG W N,CHEN Z G,CHE W X,et al.The first evaluation of chinese human-computer dialogue technology[J].arXiv:1709.10217,2017.
[18] TZENG E,HOFFMAN J,ZHANG N,et al.Deep domain confusion:maximizing for domain invariance[J].arXiv:1412.3474,2014.