Improved YOLOv3 for Small Object Detection in Remote Sensing Images
WANG Jianjun, WEI Jiang, MEI Shaohui, WANG Jian
1.School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
2.No.365 Institute, Northwestern Polytechnical University, Xi’an 710129, China
WANG Jianjun, WEI Jiang, MEI Shaohui, WANG Jian. Improved YOLOv3 for Small Object Detection in Remote Sensing Images[J]. Computer Engineering and Applications, 2021, 57(20): 133-141.
[1] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of NIPS,2012:1097-1105.
[2] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[3] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271.
[4] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018.
[5] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[6] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[7] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988.
[8] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[9] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448.
[10] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015:91-99.
[11] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2961-2969.
[12] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.
[13] LI J,LIANG X,WEI Y,et al.Perceptual generative adversarial networks for small object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1222-1230.
[14] KISANTAL M,WOJNA Z,MURAWSKI J,et al.Augmentation for small object detection[J].arXiv:1902.07296,2019.
[15] LIU S,HUANG D.Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:385-400.
[16] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015.
[17] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[18] HE Y,LIU P,WANG Z,et al.Filter pruning via geometric median for deep convolutional neural networks acceleration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:4340-4349.
[19] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9.
[20] 魏玮,蒲玮,刘依.改进YOLOv3在航拍目标检测中的应用[J].计算机工程与应用,2020,56(7):17-23.
WEI Wei,PU Wei,LIU Yi.Application of improved YOLOv3 in aerial target detection[J].Computer Engineering and Applications,2020,56(7):17-23.
[21] 唐志刚.基于YOLO V3的航拍车辆图像检测方法研究[D].赣州:江西理工大学,2020.
TANG Zhigang.Research on image detection method of aerial vehicle based on YOLO V3[D].Ganzhou:Jiangxi University of Science and Technology,2020.
[22] 吴锦涛.基于深度学习的图像小目标检测方法研究[D].成都:电子科技大学,2020.
WU Jintao.Research on image small target detection method based on deep learning[D].Chengdu:University of Electronic Science and Technology of China,2020.
[23] 张富凯,杨峰,李策.基于改进YOLOv3的快速车辆检测方法[J].计算机工程与应用,2019,55(2):12-20.
ZHANG Fukai,YANG Feng,LI Ce.Fast vehicle detection method based on improved YOLOv3[J].Computer Engineering and Applications,2019,55(2):12-20.