Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (21): 57-62.

Previous Articles     Next Articles

Adaptive genetic algorithm for problems with interval and hybrid indices

JI Xinfang1, KANG Xiangnan2   

  1. 1.Department of Mechanical, Power and Information Engineering, China University of Mining and Technology Yinchuan College, Yinchuan 750001, China
    2.Zao Quan Colliery of SN Coal Group, Yinchuan 750411, China
  • Online:2016-11-01 Published:2016-11-17

区间混合性能指标优化问题的自适应遗传算法

季新芳1,康向南2   

  1. 1.中国矿业大学 银川学院 机电动力与信息工程系,银川 750001
    2.神华宁煤集团 枣泉煤矿,银川 750411

Abstract: An adaptive evolutionary optimization algorithm of solving optimization problems with interval and hybrid indices is proposed in this paper. First, the convergence rate of a population is calculated based on the distance between the optimal individuals with adjacent generations; then the crossover and mutation rates are calculated according to the diversity, the convergence rate of a population and the number of generations; finally, the proposed algorithm is applied to an interior layout design problem, a typical optimization problem with interval uncertainty in the implicit index, and it is compared with other optimization algorithm. The experimental results confirm that the proposed algorithm has advantage in the number of optimal solutions, quality and distribution.

Key words: evolutionary optimization, hybrid indices, interval, convergence rate, crossover rate, mutation rate

摘要: 为了解决区间混合性能指标优化问题,在此提出了一种自适应进化优化方法。首先,基于前后代最优个体的距离,计算种群的收敛进度;然后,基于种群的多样性、收敛进度,以及进化代数,计算进化种群的交叉和变异概率;最后,将所提算法应用于室内布局这一典型的区间混合性能指标优化问题,并与其他算法比较,实验结果表明,所提算法在最优解数目、性能,以及分布性等方面均具有优越性。

关键词: 进化优化, 混合性能指标, 区间, 收敛进度, 交叉概率, 变异概率