Computer Engineering and Applications ›› 2020, Vol. 56 ›› Issue (11): 156-163.DOI: 10.3778/j.issn.1002-8331.1811-0271
Previous Articles Next Articles
MA Qinggong
Online:
Published:
马庆功
Abstract:
Interval-valued hesitant fuzzy set is a special hesitant fuzzy set, which can more accurately describe decision information. The Maclaurin symmetric mean operator can consider the relationship between multiple input parameter values. Based on the Maclaurin symmetric mean operator, this paper proposes an interval-valued hesitant fuzzy Maclaurin symmetric mean information aggregation method in the interval-valued hesitation fuzzy environment. Firstly, the Interval-Valued Hesitant Fuzzy Maclaurin Symmetric Mean(IVHFMSM) operator is defined. Then, the four excellent properties of the IVHFMSM operator and several special expressions are discussed. Subsequently, considering the proposed Interval-Valued Hesitant Fuzzy Weighted Maclaurin Symmetric Mean(IVHFWMSM) operator, an interval-valued hesitant fuzzy Maclaurin symmetric mean multi-attribute group decision making algorithm is constructed. Finally, an example is given to show that the IVHFWMSM operator has excellent properties, and is more reasonable and feasible.
Key words: interval-valued hesitant fuzzy sets, Maclaurin symmetric mean, interval-valued hesitant fuzzy Maclaurin symmetric mean operator, multi-attribute group decision making
摘要:
区间犹豫模糊集是特殊的犹豫模糊集,可以更准确地刻画决策信息。而Maclaurin对称平均算子能够考虑多个输入参数值间的相互关系。基于Maclaurin对称平均算子,在区间犹豫模糊环境下,提出了一种区间犹豫模糊Maclaurin对称平均信息集成算法。定义了区间犹豫模糊Maclaurin对称平均(IVHFMSM)算子;讨论了IVHFMSM算子的四个优良性质以及几种特殊表达形式;基于提出的区间犹豫模糊加权Maclaurin对称平均(IVHFWMSM)算子,构建了区间犹豫模糊Maclaurin对称平均多属性群决策算法;通过实例发现,IVHFWMSM算子性质优良,具有多选择性且更加合理可行。
关键词: 区间犹豫模糊集, Maclaurin对称平均, 区间犹豫模糊Maclaurin对称平均算子, 多属性群决策
MA Qinggong. Interval-Valued Hesitant Fuzzy M-Symmetric Mean and Its Group Decision Making Model[J]. Computer Engineering and Applications, 2020, 56(11): 156-163.
马庆功. 区间犹豫模糊M-对称平均及其群决策模型[J]. 计算机工程与应用, 2020, 56(11): 156-163.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.1811-0271
http://cea.ceaj.org/EN/Y2020/V56/I11/156