Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (16): 30-35.

Previous Articles     Next Articles

Distributed immune modal for mobile phone malware detection

WANG Pan, LIANG Yiwen   

  1. School of Computer Science, Wuhan University, Wuhan 430072, China
  • Online:2016-08-15 Published:2016-08-12

手机恶意软件检测的分布式免疫模型

王  盼,梁意文   

  1. 武汉大学 计算机学院,武汉 430072

Abstract: For the mobile phone malware detection problem, a distributed immune modal for Mobile Phone Malware Detection(MPMD-DIM) is proposed, which enables collaborative work between mobile phones and distributed detection servers, to detect mobile phone malwares quickly and accurately. This modal utilizes improved negative selection algorithm and dynamic clonal selection algorithm to optimize detection process, also gives immune response in time; as well as applies vaccine extracting and inoculating among distributed detection servers, making secondary immune response rapidly to accelerating detection process. Experiments demonstrate that this modal can advance detection rate of known mobile phone malwares;enhance detection accuracy rate of unknown mobile phone malwares;and implement grouping defense of mobile phones.

Key words: mobile phone malware, distributed immune modal, negative select, dynamic clonal select, vaccine

摘要: 针对手机恶意软件检测问题,提出一种手机恶意软件检测的分布式模型(MPMD-DIM),使手机端和分布式检测服务器以及分布式检测服务器之间协同工作,实现快速准确地检测手机恶意软件。模型利用改进的反向选择算法和动态克隆选择算法优化恶意软件检测过程,及时做出免疫响应;通过分布式检测服务器之间的疫苗提取和接种,产生二次免疫应答,加速检测过程。实验表明,该模型可以提高对已知手机恶意软件的检测率,改善对未知和变化的手机恶意软件的检测准确率,实现手机对恶意软件的群体协防。

关键词: 手机恶意软件, 分布式免疫模型, 反向选择, 动态克隆选择, 疫苗