Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (10): 55-58.

Previous Articles     Next Articles

Clustering algorithm based on membership degree of K-nearest neighbor

MA Chuang, WU Tao, DUAN Mengya   

  1. Department of Mathematical Sciences, Anhui University, Hefei 230601, China
  • Online:2016-05-15 Published:2016-05-16

基于K近邻隶属度的聚类算法研究

马  闯,吴  涛,段梦雅   

  1. 安徽大学 数学科学学院,合肥 230601

Abstract: Classic fuzzy c-means algorithm(FCM) is based on Euclidean distance, it includes a problem that different size of class cluster is not clustered correctly. Aiming at the problem, this paper presents a fuzzy C-means algorithm based on the membership degree of K-nearest neighbor(KNN_FCM). Then the paper discusses rough C-means clustering algorithm and rough fuzzy C-means clustering algorithm, which are both based on the membership degree of K-nearest neighbor. These algorithms avoide a question of threshold selection in traditional rough C-means clustering algorithm and rough fuzzy C-means clustering algorithm. Compare the KNN_FCM、KNN_RCM、KNN_RFCM with FCM、RFM、RFCM in UCI dataset, the experimental result shows that the method is feasible and effective.

Key words: membership degree of K-nearest neighbor, clustering, fuzzy C-means, rough C-means, rough fuzzy C-means

摘要: 经典模糊C均值聚类算法(FCM)基于欧氏距离,存在不同规模类簇不能正确聚类问题,针对此问题提出一种基于[K]近邻隶属度的模糊C均值聚类算法(KNN_FCM)。讨论了基于[K]近邻隶属度的粗糙C均值聚类算法(KNN_RCM)和粗糙模糊C均值聚类算法(KNN_RFCM),此方法避免了传统粗糙C均值聚类算法(RCM)和粗糙模糊C均值聚类算法(RFCM)中阈值选择问题。将KNN_FCM、KNN_RCM、KNN_RFCM分别与FCM、RFM、RFCM在UCI数据集上进行仿真比较,结果表明新方法是可行、有效的。

关键词: K近邻隶属度, 聚类, 模糊C均值, 粗糙C均值, 粗糙模糊C均值