Fusion Clustering Algorithm Based on Multi-Prototypes Using Density Peaks
MEI Jie, WEI Yuanyuan, XU Taosheng
1.Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2.University of Science and Technology of China, Hefei 230026, China
3.Intelligent Agriculture Engineering Laboratory of Anhui Province, Hefei 230031, China
MEI Jie, WEI Yuanyuan, XU Taosheng. Fusion Clustering Algorithm Based on Multi-Prototypes Using Density Peaks[J]. Computer Engineering and Applications, 2021, 57(22): 78-85.
[1] MURTAGH F,CONTRERAS P.Algorithms for hierarchical clustering:an overview[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2012,2(1):86-97.
[2] VELMURUGAN T.Efficiency of k-means and k-medoids algorithms for clustering arbitrary data points[J].International Journal of Computer Applications in Technology,2012,3(5):1758-1764.
[3] 贾露,张德生,吕端端.物理学优化的密度峰值聚类算法[J].计算机工程与应用,2020,56(13):47-53.
JIA L,ZHANG D S,LYU D D.Optimized density peak clustering algorithm in physics[J].Computer Engineering and Applications,2020,56(13):47-53.
[4] KANUNGO T,MOUNT D M,NETANYAHU N S,et al.An efficient k-means clustering algorithm:analysis and implementation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):881-892.
[5] 任永功,于戈.一种多维数据的聚类算法及其可视化研究[J].计算机学报,2005,28(11):105-109.
REN Y G,YU G.A clustering algorithm for multi-dimensional data and its visualization research[J].Chinese Journal of Computers,2005,28(11):105-109.
[6] DING C,HE X.K-means clustering via principal component analysis[C]//Proceedings of the 21st International Conference on Machine Learning,2004:29.
[7] LIKAS A,VLASSIS N,VERBEEK J J.The global k-means clustering algorithm[J].Pattern Recognition,2003,36(2):451-461.
[8] 丁志成,葛洪伟.优化分配策略的密度峰值聚类算法[J].计算机科学与探索,2020,14(5):792-802.
DING Z C,GE H W.Density peaks clustering with optimized allocation strategy[J].Journal of Frontiers of Computer Science and Technology,2020,14(5):792-802.
[9] SANDER J,ESTER M,KRIEGEL H P,et al.Density-based clustering in spatial databases:the algorithm GDBSCAN and its applications[J].Data Mining and Knowledge Discovery,1998,2(2):169-194.
[10] 马春来,单洪,马涛.一种基于簇中心点自动选择策略的密度峰值聚类算法[J].计算机科学,2016,43(7):255-258.
MA C L,SHAN H,MA T.Improved density peaks based clustering algorithm with strategy choosing cluster center automatically[J].Computer Science,2016,43(7):255-258.
[11] ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[J].Knowledge Discovery in Database,1996,96(34):226-231
[12] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
[13] 瞿俊,姜青山,董槐林.基于高斯混合模型的层次聚类算法[J].计算机研究与发展,2006,43(S3):321-327.
QU J,JIANG Q S,DONG H L.A hierarchical clustering algorithm based on Gaussian mixture model[J].Journal of Computer Research and Development,2006,43(S3):321-327.
[14] XU X,ESTER M,KRIEGEL H P,et al.A distribution-based clustering algorithm for mining in large spatial databases[C]//Proceedings of the 14th International Conference on Data Engineering,1998:324-331.
[15] CHENG Y.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
[16] AHALT S C,KRISHNAMURTHY A K,CHEN P,et al.Competitive learning algorithms for vector quantization[J].Neural Networks,1990,3(3):277-290.
[17] XIONG H,WU J,CHEN J.K-means clustering versus validation measures:a data-distribution perspective[J].IEEE Transactions on Systems,Man & Cybernetics:Part B Cybernetics,2009,39(2):318-331.
[18] LIANG J,BAI L,DANG C,et al.The K-means-type algorithms versus imbalanced data distributions[J].IEEE Transactions on Fuzzy Systems,2012,20(4):728-745.
[19] TZORTZIS G,LIKAS A.The MinMax k-means clustering algorithm[J].Pattern Recognition,2014,47(7):2505-2516.
[20] LEE E,SCHMIDT M,WRIGHT J.Improved and simplified inapproximability for k-means[J].Information Processing Letters,2017,120:40-43.
[21] JIA H,CHEUNG Y,LIU J.A new distance metric for unsupervised learning of categorical data[J].IEEE Transactions on Neural Networks and Learning Systems,2015,27(5):1065-1079.
[22] LU Y,CHEUNG Y M,TANG Y Y.Self-adaptive multiprototype-based competitive learning approach:a k-means-type algorithm for imbalanced data clustering[J].IEEE Transactions on Cybernetics,2021,51(3):1598-1612.
[23] 袁礼海,李钊,宋建社.利用高斯混合模型实现概率密度函数逼近[J].无线电通信技术,2007,33(2):20-22.
YUAN L H,LI Z,SONG J S.Probability density function approximation using Gaussian mixture model[J].Radio Communications Technology,2007,33(2):20-22.
[24] LIU M,JIANG X,KOT A C.A multi-prototype clustering algorithm[J].Pattern Recognition,2009,42(5):689-698.
[25] LIU Y,LI Z,XIONG H,et al.Understanding and enhancement of internal clustering validation measures[J].IEEE Transactions on Cybernetics,2013,43(3):982-994.
[26] DING C,HE X.K-nearest-neighbor consistency in data clustering:incorporating local information into global optimization[C]//Proceedings of the 2004 ACM Symposium on Applied Computing,2004:584-589.