Computer Engineering and Applications ›› 2015, Vol. 51 ›› Issue (19): 93-97.

Previous Articles     Next Articles

Prediction model of network traffic based on combined kernel function Gaussian regression

HUANG Fang1, LIU Yuanjun1, CHEN Bo2   

  1. 1.Department of Electronic Information Technology, Hunan Vocational College of Commerce, Changsha 410205, China
    2.School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Online:2015-09-30 Published:2015-10-13

组合核函数高斯过程的网络流量预测模型

黄  芳1,刘元君1,陈  波2   

  1. 1.湖南商务职业技术学院 电子信息技术系,长沙 410205
    2.电子科技大学 计算机科学与工程学院,成都 611731

Abstract: In order to improve the prediction precision of network traffic, this paper proposes a network traffic prediction model based on combined kernel function Gauss Process(GP) to describe the nonlinear and time-varying characteristics of network traffic. Firstly, the time delay and embedding dimension of network traffic are calculated by self correlation method and false nearest neighbor method, and training samples of network traffic are generated, and then the training set is input to combination kernel function GP learning to establish a network traffic prediction model which the genetic algorithm is used to find the optimal parameters of GP, and finally, the simulation experiments is carried out on network traffic data. The results show that, compared with the other models, the proposed model can obtain higher prediction precision of network traffic, the prediction results are more stable and reliable, so it has great practical application value.

Key words: Gaussian Process(GP), genetic algorithm, delay time, network traffic, embedding dimension

摘要: 针对网络流量的非线性和时变性等特点,为了提高网络流量预测精度,提出一种组合核函数高斯过程的网络流量预测模型。用自相关法和假近邻法计算网络流量的延迟时间和嵌入维数,构建网络流量学习样本;采用组合核函数高斯过程对训练集进行学习,并且参数通过遗传算法进行优化;最后采用网络流量数据对模型性能测试。仿真表明,相对于对比模型,组合核函数高斯模型获得了更高的预测精度,预测结果更加稳定、可靠,具有较大的实际应用价值。

关键词: 高斯过程, 遗传算法, 延迟时间, 网络流量, 嵌入维数