Computer Engineering and Applications ›› 2015, Vol. 51 ›› Issue (11): 167-171.

Previous Articles     Next Articles

A kind of high resolution remote sensing image processing method based on Hadoop

CHANG Shengpeng1, MA Yiwu2, CAI Lijun1, DING Yucheng1   

  1. 1.College of Information Science and Engineering, Hunan University, Changsha 410082, China
    2.Hunan University Construction Office, National Supercomputing Center in Changsha, Changsha 410082, China
  • Online:2015-06-01 Published:2015-06-12

一种基于Hadoop的高分辨率遥感图像处理方法

常生鹏1,马亿旿2,蔡立军1,丁玉成1   

  1. 1.湖南大学 信息科学与工程学院,长沙 410082 
    2.国家超级计算长沙中心 湖南大学建设办公室,长沙 410082

Abstract: As vast and multi-source high-resolution remote sensing data is acquired, time consuming and low efficiency of traditional processing way have already can not meet the needs of users. According to the above problem, this paper puts forward a high score of remote sensing data processing based on cloud computing framework, designs and improves the Meanshift algorithms of image edge segmentation by using Hadoop technology, and has carried on the simulation experiment in the Hadoop environment. Experimental results show that high resolution satellite image data processing speed under the Hadoop environment is improved obviously.

Key words: high resolution remote sensing data, cloud computing, Hadoop, edge segmentation

摘要: 随着海量、多源的高分辨率遥感数据的获取,耗时较多、效率低下的传统处理方式已经不能满足用户需求。针对上述问题,提出了一种基于云计算的高分遥感数据处理框架,利用Hadoop技术设计和改进了Meanshift图像边缘分割算法,并在Hadoop环境下进行了仿真实验。实验结果表明,在Hadoop环境下的高分辨率卫星图像数据处理速度有了明显的改善。

关键词: 高分辨率遥感数据, 云计算, Hadoop, 边缘分割