Computer Engineering and Applications ›› 2014, Vol. 50 ›› Issue (5): 90-95.

Previous Articles     Next Articles

Task scheduling based on differential evolution algorithm in cloud computing

DONG Lili, HUANG Ben, JIE Jun   

  1. School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Online:2014-03-01 Published:2015-05-12


董丽丽,黄  贲,介  军   

  1. 西安建筑科技大学 信息与控制学院,西安 710055

Abstract: How to make full use of cloud resources to dispatch tasks efficiently is an important issue in cloud computing. The MSMDE mentioned in this thesis is an algorithm based on multi-strategy mutation differential evolution of differential evolution. This algorithm is added with category of normal distribution and multiple mutation strategy on the basics of standard Differential Evolution(DE), difference vector individuals in mutation strategy use roulette to choose based on individual similarity, improve DE algorithm’s shortcomings of slow convergence rate and local optimum tendency, can effectively solve combinatorial optimization problem. After running simulation tests on simulation platform CloudSim, the result shows that this algorithm is able to achieve relatively short total task completion time and improve resource utilization.

Key words: cloud computing, task dispatch, differential evolution, multi-strategy mutation, CloudSim

摘要: 如何充分利用云中资源对任务进行高效调度,是云计算中的重要问题。提出一种基于差分进化的多策略变异差分进化任务调度算法。该算法在标准差分进化算法的基础上加入了基于正态分布的分类和多种变异策略,变异策略中差异向量个体采用基于个体相似度的轮盘赌选择,改善了标准差分算法收敛速度慢和易陷入局部最优的缺点,可有效求解组合优化问题。在仿真平台CloudSim上进行模拟测试,结果表明该算法能得到较短的任务总完成时间,提高了资源利用率。

关键词: 云计算, 务调度, 差分进化, 多策略变异, CloudSim