Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (8): 233-235.

• 工程与应用 • Previous Articles     Next Articles

Application of improved CSFCM clustering in red tide monitoring

WANG Xingqiang1, LIU Changxing1, LIU Guowei1, ZHANG Xudong2   

  1. 1.Department of Information, General Hospital of Jinan Military Region, Jinan 250031, China
    2.Unit 72515 of PLA, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-03-11 Published:2012-03-11

改进的CSFCM聚类算法及其在赤潮监测中的应用

王兴强1,刘长兴1,刘国伟1,张旭东2   

  1. 1.济南军区总医院 信息科,济南 250031
    2.中国人民解放军72515部队

Abstract: In order to satisfy data mining requirements of red tide monitoring data in marine observation system, a novel CSFCM clustering with subsets of attribute’s weights, based on thorough discussion of algorithms for data mining, is introduced. In the proposed method, a classic COSA(Clustering Object on Subsets of Attributes) algorithm and the fuzzy C-means algorithm are adopted with pretreatment of similary relation and then the criterion function and clustering model are improved. The experimental results demonstrate the applicability, feasibility and efficiency of this new algorithm on data mining of red tide monitoring, and it provides necessary decision-
making basis for red tide forecast.

Key words: red tide monitoring, Clustering Objects on Subsets of Attributes(COSA), clustering

摘要: 为满足海洋监测系统中赤潮监测数据的信息挖掘需求,在深入探讨数据挖掘相关算法的基础上,提出一种新的基于分组属性加权聚类的CSFCM算法。该算法将COSA(Clustering Objects on Subsets of Attributes)算法与模糊C均值算法相结合并引入相似关系预处理,再对准则函数和聚类模型加以改进。实验结果表明,该算法适用于赤潮监测数据挖掘的实时聚类需求,准确率高,为赤潮预报提供必要的决策依据。

关键词: 赤潮监测, 属性子集的聚类对象(COSA), 聚类