Computer Engineering and Applications ›› 2011, Vol. 47 ›› Issue (36): 54-56.

• 研究、探讨 • Previous Articles     Next Articles

Shuffled frog leaping algorithm based on neighborhood orthogonal crossover operator

MENG Qingying1,WANG Lianguo2   

  1. 1.College of Engineering,Gansu Agricultural University,Lanzhou 730070,China
    2.College of Information Science Technology,Gansu Agricultural University,Lanzhou 730070,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-12-21 Published:2011-12-21

基于邻域正交交叉算子的混合蛙跳算法

孟庆莹1,王联国2   

  1. 1.甘肃农业大学 工学院,兰州 730070
    2.甘肃农业大学 信息学院,兰州 730070

Abstract: Shuffled Frog Leaping Algorithm(SFLA) is a new swarm intelligence optimization algorithm.Since basic shuffled frog leaping algorithm has low optimization precision and slow convergence speed,this paper proposes a Shuffled Frog Leaping Algorithm based on neighborhood Orthogonal Crossover Operator(SFLA-OCO).Simulation?results?show that the new algorithm improves not only the convergence speed but?also?the?global?seach abilities.

Key words: shuffled frog leaping algorithm, swarm intelligence, orthogonal crossover operator

摘要: 混合蛙跳算法(SFLA)是一种全新的群体智能优化算法。针对基本混合蛙跳算法优化精度低、收敛速度慢的缺点,引入邻域正交交叉算子的概念,提出了一种基于邻域正交交叉算子的混合蛙跳算法(SFLA-OCO)。通过对基准函数进行测试,实验结果证明改进的算法提高了算法的收敛速度,增强了算法的寻优能力。

关键词: 混合蛙跳算法, 群体智能, 正交交叉算子