Computer Engineering and Applications ›› 2007, Vol. 43 ›› Issue (24): 185-188.
• 工程与应用 • Previous Articles Next Articles
LI Hong-mei,SUN Jun,XU Wen-bo
Received:
Revised:
Online:
Published:
Contact:
李红梅,孙 俊,须文波
通讯作者:
Abstract: A multistage stochastic financial optimization manages portfolio in constantly changing financial markets by periodically rebalancing the asset portfolio to achieve return maximization and/or risk minimization.In this paper,we present a decision-making process that uses our proposed Quantum-behaved Particle Swarm Optimization(QPSO) Algorithm to solve multi-stage portfolio optimization problem.The objective function is classical return-variance function.The performance of our algorithm is demonstrated by optimizing the allocation of cash and various stocks in S&P 100 index.Experiments are conducted to compare performance of the portfolios optimized by different objective functions with Particle Swarm Optimization(PSO) algorithm and Genetic Algorithm(GA) in terms of efficient frontiers.
Key words: Multi-objective programming, asset allocation, Particle Swarm, Quantum-behaved
摘要: 在不断变化的金融市场中,多阶段投资组合优化通过周期性地重组投资对象来追求回报最大,风险最小。提出了使用基于量子化行为的粒子群优化算法(Quantum-behaved Particle Swarm Optimization,QPSO)解决多阶段投资优化问题,并使用经典的利润风险函数作为目标函数,通过算法对标准普尔指数100的不同股票和现金进行投资组合的优化研究。根据实验得出的期望收益率与方差表明,QPSO算法在寻找全局最优解方面要优于粒子群算法(Particle Swarm Optimization,PSO)和遗传算法(Genetic Algorithm,GA)。
关键词: 随机规划, 资产分配, 粒子群, 量子行为
LI Hong-mei,SUN Jun,XU Wen-bo. Empirical study based on Quantum-behaved Particle Swarm Optimization stochastic programming algorithm[J]. Computer Engineering and Applications, 2007, 43(24): 185-188.
李红梅,孙 俊,须文波. 基于量子行为粒子群优化方法的随机规划算法[J]. 计算机工程与应用, 2007, 43(24): 185-188.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2007/V43/I24/185