[1] LIU Q H, ZHANG Y, YANG G P. Small unopened cotton boll counting by detection with MRF-YOLO in the wild[J]. Computers and Electronics in Agriculture, 2023, 204: 107576.
[2] SAINI P, NAGESH D S. CottonWeeds: empowering precision weed management through deep learning and comprehensive dataset[J]. Crop Protection, 2024, 181: 106675.
[3] NALINI K, MURHUKRISHNAN P, CHINNUSAMY C, et al. Weeds of cotton a review[J]. Agricultural Reviews, 2015, 36(2): 140.
[4] MZOUGHI O, YAHIAOUI I. Deep learning-based segmentation for disease identification[J]. Ecological Informatics, 2023, 75: 102000.
[5] CHEN D, LU Y Z, LI Z J, et al. Performance evaluation of deep transfer learning on multi-class identification of common weed species in cotton production systems[J]. Computers and Electronics in Agriculture, 2022, 198: 107091.
[6] DARBYSHIRE M, COUTTS S, BOSILJ P, et al. Review of weed recognition: a global agriculture perspective[J]. Computers and Electronics in Agriculture, 2024, 227: 109499.
[7] 何全令, 杨静文, 梁晋欣, 等. 面向嵌入式除草机器人的玉米田间杂草识别方法[J]. 计算机工程与应用, 2024, 60(2): 304-313.
HE Q L, YANG J W, LIANG J X, et al. Weed identification method in corn fields applied to embedded weeding robots[J]. Computer Engineering and Applications, 2024, 60(2): 304-313.
[8] GUO Z H, CAI D D, BAI J C, et al. Intelligent rice field weed control in precision agriculture: from weed recognition to variable rate spraying[J]. Agronomy, 2024, 14(8): 1702.
[9] 胡冬, 吴敏琪, 施莲莉, 等. 基于机器视觉技术的农田杂草识别研究进展[J]. 上海农业科技, 2025(3): 182-184.
HU D, WU M Q, SHI L L, et al. Research progress of weed identification in farmland based on machine vision technology[J]. Shanghai Agricultural Science and Technology, 2025(3): 182-184.
[10] 疏雅丽, 张国伟, 王博, 等. 基于深层连接注意力机制的田间杂草识别方法[J]. 计算机工程与应用, 2022, 58(6): 271-277.
SHU Y L, ZHANG G W, WANG B, et al. Field weed identification method based on deep connection attention mechanism[J]. Computer Engineering and Applications, 2022, 58(6): 271-277.
[11] HU K, WANG Z Y, COLEMAN G, et al. Deep learning techniques for in-crop weed identification: a review[J]. arXiv:2103.14872, 2021.
[12] XIANG W T, WU D C, WANG J. Enhancing stem localization in precision agriculture: a two-stage approach combining YOLOv5 with EffiStemNet[J]. Computers and Electronics in Agriculture, 2025, 231: 109914.
[13] LI S Z, CHEN Z H, XIE J L, et al. PD-YOLO: a novel weed detection method based on multi-scale feature fusion[J]. Frontiers in Plant Science, 2025, 16: 1506524.
[14] XU K, ZHU Y, CAO W X, et al. Multi-modal deep learning for weeds detection in wheat field based on RGB-D images[J]. Frontiers in Plant Science, 2021, 12: 732968.
[15] RAI N, ZHANG Y, RAM B G, et al. Applications of deep learning in precision weed management: a review[J]. Computers and Electronics in Agriculture, 2023, 206: 107698.
[16] 朱养鑫, 郝珊珊, 郑伟健, 等. 基于知识蒸馏的多教师棉田杂草检测模型[J]. 农业工程学报, 2025, 41(7): 200-210.
ZHU Y X, HAO S S, ZHENG W J, et al. Multi-teacher cotton field weed detection model based on knowledge distillation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(7): 200-210.
[17] 徐可, 谢奇, 宋明翰, 等. 基于多模态信息融合的麦田杂草检测与管理系统设计与开发[J]. 农业工程学报, 2025, 41(8): 175-182.
XU K, XIE Q, SONG M H, et al. Development of weed detection and management system using multimodal information fusion for wheat fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(8): 175-182.
[18] ZHENG L, ZHU C G, LIU L, et al. Star-YOLO: a lightweight and efficient model for weed detection in cotton fields using advanced YOLOv8 improvements[J]. Computers and Electronics in Agriculture, 2025, 235: 110306.
[19] ZHANG W X, SHI X W, JIANG M L, et al. Improved you only look once for weed detection in soybean field under complex background[J]. Engineering Applications of Artificial Intelligence, 2025, 151: 110762.
[20] ZHANG Y J, XU Y, HOU J, et al. LMS-YOLO11n: a lightweight multi-scale weed detection model[J]. International Journal of Advanced Computer Science and Applications, 2025, 16(1): 1291.
[21] BAJRAKTARI A, TOYLAN H. Autonomous agricultural robot using YOLOv8 and ByteTrack for weed detection and des-truction[J]. Machines, 2025, 13(3): 219.
[22] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5694-5703.
[23] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[24] TERVEN J, CóRDOVA-ESPARZA D M, ROMERO-GONZáLEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[25] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[26] RAHMAN M M, MUNIR M, MARCULESCU R. EMCAD: efficient multi-scale convolutional attention decoding for medical image segmentation[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 11769-11779.
[27] GAO T, ZHANG Y, ZHANG Z Y, et al. BHViT: binarized hybrid vision transformer[C]//Proceedings of the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2025: 3563-3572.
[28] WANG X P, WAN S T, LI Z H, et al. ECL-Tear: lightweight detection method for multiple types of belt tears[J]. Measurement, 2025, 251: 117269.
[29] DANG F Y, CHEN D, LU Y Z, et al. YOLOWeeds: a novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems[J]. Computers and Electronics in Agriculture, 2023, 205: 107655.
[30] RAHMAN A, LU Y, WANG H. Deep neural networks for weed detections towards precision weeding[C]//Proceedings of the 2022 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2022.
[31] ZHU M L, KONG E. Multi-scale fusion uncrewed aerial vehicle detection based on RT-DETR[J]. Electronics, 2024, 13(8): 1489.
[32] FENG Y F, HUANG J G, DU S Y, et al. Hyper-YOLO: when visual object detection meets hypergraph computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(4): 2388-2401. |