
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (23): 248-263.DOI: 10.3778/j.issn.1002-8331.2506-0362
• Graphics and Image Processing • Previous Articles Next Articles
CHEN Hui, YU Yongjie
Online:2025-12-01
Published:2025-12-01
陈辉,虞永杰
CHEN Hui, YU Yongjie. LGM-YOLOv11: Underwater Object Detection Model Fusing Multi-Scale Attention Mechanism[J]. Computer Engineering and Applications, 2025, 61(23): 248-263.
陈辉, 虞永杰. LGM-YOLOv11:融合多尺度注意力机制的水下目标检测模型[J]. 计算机工程与应用, 2025, 61(23): 248-263.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2506-0362
| [1] BENISTO L C L, SUKUMARAN R, SARAVANAN M. Architecture, localization techniques, routing protocols and challenges for UWNS[C]//Proceedings of the International Conference on Data Science and Network Security. Piscataway: IEEE, 2023: 1-7. [2] LIN C, HAN G J, JIANG J F, et al. Underwater pollution tracking based on software-defined multi-tier edge computing in 6G-based underwater wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 491-503. [3] MILLER K A, THOMPSON K F, JOHNSTON P, et al. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps[J]. Frontiers in Marine Science, 2018, 4: 418. [4] NOMIKOS N, GKONIS P K, BITHAS P S, et al. A survey on UAV-aided maritime communications:deployment considerations, applications, and future challenges[J]. IEEE Open Journal of the Communications Society, 2023, 4: 56-78. [5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. [7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [10] FENG J F, JIN T. CEH-YOLO: a composite enhanced YOLO-based model for underwater object detection[J]. Ecological Informatics, 2024, 82: 102758. [11] LI X, ZHAO Y, SU H, et al. Efficient underwater object detection based on feature enhancement and attention detection head[J]. Scientific Reports, 2025, 15(1): 5973. [12] CHEN R L, ZHOU H B, XIE H, et al. YOLO-CE: an underwater low-visibility environment target detection algorithm based on YOLO11[J]. The Journal of Supercomputing, 2025, 81(5): 723. [13] 梁秀满, 李然, 于海峰, 等. 改进YOLOv7的水下目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 89-99. LIANG X M, LI R, YU H F, et al. Improved underwater object detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(6): 89-99. [14] 陶洋朱腾, 钟邦乾. RepViTS-YOLOX: 水下模糊及遮挡目标检测方法[J]. 计算机工程与应用, 2024, 60(13): 200-208. TAO Y Z T, ZHONG B Q. RepViTS-YOLOX: underwater blurred and occluded target detection method[J]. Computer Engineering and Applications, 2024, 60(13): 200-208. [15] ER M J, CHEN J, ZHANG Y, et al. Research challenges, recent advances, and popular datasets in deep learning-based underwater marine object detection: a review[J]. Sensors (Basel), 2023, 23(4): 1990. [16] LU W, CHEN S B, LI H D, et al. LEGNet: lightweight edge-Gaussian driven network for low-quality remote sensing image object detection[J]. arXiv:2503.14012, 2025. [17] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[J]. arXiv:2312. 17663, 2023. [18] WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv:2110. 13389, 2021. [19] LU W, CHEN S B, TANG J, et al. A robust feature downsampling module for remote-sensing visual tasks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12. [20] LIANG X T, SONG P H. Excavating RoI attention for underwater object detection[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 2651-2655. [21] LI S Y, KE L, DANELLJAN M, et al. Matching anything by segmenting anything[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 18963-18973. [22] XU S B, ZHENG S C, XU W H, et al. HCF-Net: hierarchical context fusion network for infrared small object detection[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2024: 1-6. [23] LU W, CHEN S B, DING C H Q, et al. LWGANet: a lightweight group attention backbone for remote sensing visual tasks[J]. arXiv:2501.10040, 2025. [24] ZHANG M J, ZHANG C, ZHANG Q M, et al. ESSAformer: efficient Transformer for hyperspectral image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 23016-23027. [25] XI D J, QIN Y, WANG S J. YDRSNet: an integrated YOLOv5-Deeplabv3+real-time segmentation network for gear pitting measurement[J]. Journal of Intelligent Manufacturing, 2023, 34(4): 1585-1599. [26] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. [27] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[C]//Advances in Neural Information Processing Systems, 2024: 107984-108011. [28] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024. [29] TIAN Y, YE Q, DOERMANN D. YOLOv12: attention-centric real-time object detectors[J]. arXiv:2502.12524, 2025. [30] LEI M, LI S, WU Y, et al. YOLOv13: real-time object detection with hypergraph-enhanced adaptive visual perception[J]. arXiv:2506.17733, 2025. [31] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. [32] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. [33] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8510-8519. [34] DAI L H, LIU H, SONG P H, et al. Edge-guided representation learning for underwater object detection[J]. CAAI Transactions on Intelligence Technology, 2024, 9(5): 1078-1091. [35] QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10208-10219. [36] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Advances in Neural Information Processing Systems, 2023: 51094-51112. [37] FENG Y, HUANG J, DU S, et al. Hyper-YOLO: when visual object detection meets hypergraph computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(4): 2388-2401. [38] WANG Z, LI C, XU H, et al. Mamba-YOLO: SSMs-based YOLO for object detection[J]. arXiv:2406.05835, 2024. [39] XIAO Y, XU T F, XIN Y, et al. FBRT-YOLO: faster and better for real-time aerial image detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2025: 8673-8681. [40] WANG Y, YE H, SHU X. BSE-YOLO: an enhanced lightweight multi-scale underwater object detection model[J]. Sensors (Basel), 2025, 25(13): 3890. [41] LUO Y, WU A, FU Q. MAS-YOLOv11: an improved underwater object detection algorithm based on YOLOv11[J]. Sensors (Basel), 2025, 25(11): 3433. [42] LUO S F, DONG C, DONG G X, et al. YOLO-DAFS: a composite-enhanced underwater object detection algorithm[J]. Journal of Marine Science and Engineering, 2025, 13(5): 947. [43] LIU J X, ZHOU R G, LI Y C, et al. Enhanced underwater object detection with YOLO-LDFE: a model for improved accuracy with balanced efficiency[J]. Journal of Real-Time Image Processing, 2025, 22(2): 58. [44] HUANG S H, LU Z C, CUN X D, et al. DEIM: detr with improved matching for fast convergence[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2025: 15162-15171. [45] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974. [46] LIU F L, ZHENG Q H, TIAN X Y, et al. Rethinking the multi-scale feature hierarchy in object detection transformer (DETR)[J]. Applied Soft Computing, 2025, 175: 113081. [47] LIU C W, LI H J, WANG S C, et al. A dataset and benchmark of underwater object detection for robot picking[C]//Proceedings of the IEEE International Conference on Multimedia & Expo Workshops. Piscataway: IEEE, 2021: 1-6. [48] FU C P, LIU R S, FAN X, et al. Rethinking general underwater object detection: datasets, challenges, and solutions[J]. Neurocomputing, 2023, 517: 243-256. |
| [1] | LI Bin, LI Shenglin. Improved YOLOv11n Small Object Detection Algorithm in UAV View [J]. Computer Engineering and Applications, 2025, 61(7): 96-104. |
| [2] | JI Xingyu, HUANG Chenrong, YAO Juncai, WANG Kai. Research on Insulator Detection Based on Branch Characteristics and Repulsion Loss [J]. Computer Engineering and Applications, 2025, 61(7): 141-152. |
| [3] | CHEN Xiefa, LI Min, ZHAO Jingyu, HE Yujie, YANG Aitao. Low Light Target Detection Algorithm Based on Feature Fusion Enhancement [J]. Computer Engineering and Applications, 2025, 61(22): 235-244. |
| [4] | LI Yong, SHEN Jian. LFDS-YOLO: Lightweight Aerial Pavement Damage Detection Algorithm with Multi-Scale Feature Fusion [J]. Computer Engineering and Applications, 2025, 61(21): 81-93. |
| [5] | JI Wenjie, SONG Tinglun, RONG Xiaoluo, ZHOU Mai. PATD-YOLO:Road Obstacle Object Detection Algorithm Based on YOLOv11 [J]. Computer Engineering and Applications, 2025, 61(21): 129-143. |
| [6] | ZHU Fengran, WANG Huiying, LIN Xiaoli, LI Quanxin, PANG Jun. Non-Uniform Hypergraph Clustering Model Combining Multi-Scale Attention and Dynamic Construction [J]. Computer Engineering and Applications, 2025, 61(2): 200-207. |
| [7] | WANG Shupeng, LI Fan. Underwater Object Detection Algorithm with Anti-Aliasing and Multi-Scale Feature Fusion [J]. Computer Engineering and Applications, 2025, 61(18): 209-217. |
| [8] | YIN Xupeng, ZHAO Xingqiang. YOLOv11-MAS: Efficient PCB Defect Detection Algorithm [J]. Computer Engineering and Applications, 2025, 61(17): 102-111. |
| [9] | SONG Wei, NI Zhou, LIANG Jichen, ZHANG Minghua, WANG Jian. Underwater Object Detection Combining Target Feature Enhancement and Semantic-Location Path Aggregation [J]. Computer Engineering and Applications, 2025, 61(15): 93-110. |
| [10] | LIU Yuping, SHANG Cuijuan, LI Mingming. Improved YOLOv11 Algorithm for Small Target Detection in UAVs [J]. Computer Engineering and Applications, 2025, 61(15): 124-131. |
| [11] | FENG Jinqiu, YAN Fang, YANG Yang, LI Haiyu. MMF-YOLO Algorithm for Detection of Micro-Defects on Wafer Mold Surfaces [J]. Computer Engineering and Applications, 2025, 61(15): 132-143. |
| [12] | HE Zhixuan, CHEN Lili, WANG Xiang, LI Ronghua. DMF-YOLOv11:Target Detection Algorithm for UAV Images Based on Improved YOLOv11n [J]. Computer Engineering and Applications, 2025, 61(14): 88-100. |
| [13] | HAN Tao, YU Shuaishuai, MA Ling, HUANG Yourui, HOU Shuainan, PANG Jiale. Research on Detection Model of Foreign Objects and Defects in Photovoltaic Panels Based on Improved YOLOv11n [J]. Computer Engineering and Applications, 2025, 61(14): 123-134. |
| [14] | LUO Xianzhi, WANG Hang. Small Target Detection Algorithm for UAV Based on Cross-Scale Feature Fusion [J]. Computer Engineering and Applications, 2025, 61(14): 135-147. |
| [15] | XIONG Gan, CHEN Cifa, ZHANG Shang. QMDF-YOLO11: Rice Pests Detection Algorithm in Complex Scenarios [J]. Computer Engineering and Applications, 2025, 61(13): 113-123. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||