[1] 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 241-270.
LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 241-270.
[2] 刘忠强, 王岩, 郝晟功, 等. 基于改进YOLOv8的燃气轮机涡轮叶片表面缺陷检测算法[J]. 热能动力工程, 2025, 39(12):168-175.
LIU Z Q, WANG Y, HAO S G, et al. Gas turbine blade surface defect detection algorithm based on improved YOLOv8[J]. Journal of Engineering for Thermal Energy and Power, 2025, 39(12):168-175.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017: 2980-2988.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[7] 戴林华, 黎远松, 石睿, 等. HSED-YOLO: 一种轻量化的带钢表面缺陷检测模型[J]. 广西师范大学学报 (自然科学版), 2025, 43(2): 95-106.
DAI L H, LI Y S, SHI R, et al. HSED-YOLO: a lightweight model for detecting surface defects in strip steel[J]. Journal of Guangxi Normal University (Natural Science Edition), 2025, 43(2): 95-106.
[8] YI H, LIU B, ZHAO B, et al. Small object detection algorithm based on improved YOLOv8 for remote sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1734-1747.
[9] ZHU J H, XIE Z, JIANG N, et al. Delay-Doppler map shaping through oversampled complementary sets for high-speed target detection[J]. Remote Sensing, 2024, 16(16): 2898.
[10] XIE T, WANG L, WANG K, et al. FARP-Net: local-global feature aggregation and relation-aware proposals for 3D object detection[J]. IEEE Transactions on Multimedia, 2024, 26: 1027-1040.
[11] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and attention gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[12] ZHENG M J, SUN L, DONG J X, et al. SMFANet: a lightweight self-modulation feature aggregation network for efficient image super-resolution[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2025: 359-375.
[13] 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238.
XU Y W, LI J, DONG Y F, . et al. Survey of development of YOLO object detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238.
[14] 曾勇杰, 范必双, 杨涯文, 等. 改进YOLOv8算法在风机叶片缺陷检测上的应用[J]. 电子测量与仪器学报, 2024, 38(8): 26-35.
ZENG Y J, FAN B S, YANG Y W, et al. YOLOv8 algorithm is improved in the defect detection of wind turbine blades applications[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(8): 26-35.
[15] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[16] YANG Z, GUAN Q, ZHAO K, et al. Multi-branch auxiliary fusion YOLO with re-parameterization heterogeneous convolutional for accurate object detection[J]. arXiv:2407. 04381, 2024.
[17] LI Y H, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6053-6062.
[18] YU Z, HUANG H, CHEN W, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 164(1): 165-175.
[19] YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[J]. arXiv:2306. 15988, 2023.
[20] 赵侃, 汪慧兰, 郭娇娇, 等. 基于DTA-FSAF的无人机小目标检测研究[J]. 计算机技术与发展, 2024, 34(4):101-108.
ZHAO K, WANG H L, GUO J J, et al. Research on small object detection of UAV based on DTA-FSAF[J]. Computer Technology and Development, 2024, 34(4):101-108.
[21] JIANG Y Q, TAN Z Y, WANG J Y, et al. Giraffedet: a heavy-neck paradigm for object detection[J]. arXiv:2202.04256, 2022.
[22] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[23] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[24] WU F, FAN A, BAEVSKI A, et al. Pay less attention with lightweight and dynamic convolutions[J]. arXiv:1901.10430, 2019.
[25] CHEN Z H, YANG C, LI Q F, et al. Disentangle your dense object detector[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021:4939-4948.
[26] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8510-8519.
[27] 李岩超, 史卫亚, 冯灿. 面向无人机航拍小目标检测的轻量级YOLOv8检测算法[J]. 计算机工程与应用, 2024, 60(17): 167-178.
LI Y C, SHI W Y, FENG C. Lightweight YOLOv8 detection algorithm for small object detection in UAV aerial photography[J]. Computer Engineering and Applications, 2024, 60(17): 167-178.
[28] 赵鑫, 陈里里, 杨维川, 等. DY-YOLOv5: 基于多重注意力机制的航拍图像目标检测[J]. 计算机工程与应用, 2024, 60(7): 183-191.
ZHAO X, CHEN L L, YANG W C, et al. DY-YOLOv5: target detection for aerial image based on multiple attention[J]. Computer Engineering and Applications, 2024, 60(7): 183-191.
[29] 周璇, 葛琦, 邵文泽. 高分辨率特征增强的无人机航拍小目标检测[J]. 数据采集与处理, 2024, 39(4): 908-921.
ZHOU X, GE Q, SHAO W Z. Small target detection in UAV aerial images based on high resolution feature enhancement[J]. Journal of Data Acquisition and Processing, 2024, 39(4): 908-921.
[30] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[31] XU S L, WANG X X, LV W Y, et al. PP-YOLOE: an evolved version of YOLO[J]. arXiv:2203.16250, 2022. |