[1] BECKMANN M J, MCGUIRE C B, WINSTEN C B. Studies in the economics of transportation[M]. New Haven: Yale University Press, 1956.
[2] PEREDERIEIEVA O, EHRGOTT M, RAITH A, et al. A framework for and empirical study of algorithms for traffic assignment[J]. Computers & Operations Research, 2015, 54: 90-107.
[3] XIE J, XIE C. Origin-based algorithms for traffic assignment: algorithmic structure, complexity analysis, and convergence performance[J]. Transportation Research Record: Journal of the Transportation Research Board, 2015, 2498(1): 46-55.
[4] NIE Y M. A class of bush-based algorithms for the traffic assig-nment problem[J]. Transportation Research Part B: Methodological, 2010, 44(1): 73-89.
[5] LO H K, CHEN A. Reformulating the traffic equilibrium problem via a smooth gap function[J]. Mathematical and Computer Modelling, 2000, 31(2/3): 179-195.
[6] LO H K, CHEN A. Traffic equilibrium problem with route-specific costs: formulation and algorithms[J]. Transportation Research Part B: Methodological, 2000, 34(6): 493-513.
[7] SZETO W Y, JIANG Y, WONG K I, et al. Reliability-based stochastic transit assignment with capacity constraints: formul-ation and solution method[J]. Transportation Research Part C: Emerging Technologies, 2013, 35: 286-304.
[8] CHEN A, ZHOU Z. The α-reliable mean-excess traffic equilibrium model with stochastic travel times[J]. Transportation Research Part B: Methodological, 2010, 44(4): 493-513.
[9] 刘志伟, 宋正沄, 邓卫, 等. 无人驾驶汽车对中短距离市际出行方式选择行为的影响[J]. 交通信息与安全, 2022, 40(2): 91-97.
LIU Z W, SONG Z Y, DENG W, et al. Impacts of autonomous vehicles on mode choice behavior in the context of short-and medium-distance intercity travel[J]. Journal of Transport Information and Safety, 2022, 40(2): 91-97.
[10] 张凌煊, MONICA M, 张士行, 等. 考虑街区尺寸的不同交通方式广义出行成本分析[J]. 交通运输系统工程与信息, 2019, 19(2): 166-174.
ZHANG L X, MONICA M, ZHANG S H, et al. An analysis of traffic cost of different transport modes considering city block size[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 166-174.
[11] 程国柱, 刘轩龄, 冯天军. 行为经济学视角下城市居民出行方式选择演化博弈模型[J]. 哈尔滨工业大学学报, 2024, 56(7): 102-111.
CHENG G Z, LIU X L, FENG T J. Evolutionary model of transportation mode choice for urban residents from the perspective of behavioral economics[J]. Journal of Harbin Institute of Technology, 2024, 56(7): 102-111.
[12] 黄合来, 蒋梦曦, 韩春阳, 等. 基于安全可靠性的多类用户交通分配模型[J]. 中国公路学报, 2018, 31(4): 312-321.
HUANG H L, JIANG M X, HAN C Y, et al. Traffic assignment method for multiclass users considering safety reliability[J]. China Journal of Highway and Transport, 2018, 31(4): 312-321.
[13] 黄中祥, 胡望欣, 李志学. 考虑快捷性和舒适性出行偏好的网络混合均衡[J]. 交通科学与工程, 2022, 38(3): 121-127.
HUANG Z X, HU W X, LI Z X. Mixed network equilibrium considering travel preferences of rapidity and comfort[J]. Journal of Transport Science and Engineering, 2022, 38(3): 121-127.
[14] 张卫华, 刘冉冉, 颜鹏, 等. 考虑舒适度因素的出行价值模型[J]. 公路交通科技, 2020, 37(5): 116-122.
ZHANG W H, LIU R R, YAN P, et al. A travel value model considering comfort factors[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 116-122.
[15] 孙超, 尹浩为, 张玮, 等. 基于有限理性的交通网络可靠性均衡模型[J]. 西南交通大学学报, 2023, 58(1): 83-90.
SUN C, YIN H W, ZHANG W, et al. Traffic equilibrium model of reliable network based on bounded rationality[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 83-90.
[16] 徐光明, 王英姿, 史峰, 等. 基于出行时间可靠性的支路网络均衡分析[J]. 吉林大学学报(工学版), 2015, 45(3): 755-760.
XU G M, WANG Y Z, SHI F, et al. Traffic flow equilibrium analysis of branch network based on travel time reliability[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3): 755-760.
[17] SUN C, CHENG L, ZHU S L, et al. Multi-criteria user equilibrium model considering travel time, travel time reliability and distance[J]. Transportation Research Part D: Transport and Environment, 2019, 66: 3-12.
[18] CHEN P, NIE Y. Bicriterion shortest path problem with a general nonadditive cost[J]. Transportation Research Part B: Meth-odological, 2013, 57: 419-435.
[19] DI X, LIU H X, BAN X J, et al. Ridesharing user equilibrium and its implications for high-occupancy toll lane pricing[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2667(1): 39-50.
[20] LI Y Y, LIU Y, XIE J. A path-based equilibrium model for ridesharing matching[J]. Transportation Research Part B: Methodological, 2020, 138: 373-405.
[21] MA J, XU M, MENG Q, et al. Ridesharing user equilibrium problem under OD-based surge pricing strategy[J]. Transportation Research Part B: Methodological, 2020, 134: 1-24.
[22] LI M, DI X, LIU H X, et al. A restricted path-based ridesharing user equilibrium[J]. Journal of Intelligent Transportation Systems, 2020, 24(4): 383-403.
[23] AGRAWAL S K, BOYLES S D, JIANG N, et al. Network route choice model for battery electric vehicle drivers with different risk attitudes[J]. Transportation Research Record: Journal of the Transportation Research Board, 2015, 2498(1): 75-83.
[24] JEFF BAN X, DESSOUKY M, PANG J S, et al. A general equilibrium model for transportation systems with e-hailing services and flow congestion[J]. Transportation Research Part B: Methodological, 2019, 129: 273-304.
[25] LIU Y H, CHEN Z B, XIE C, et al. Temporal equilibrium for electrified ride-sourcing markets considering charging capacity and driving fatigue[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 104008.
[26] HUANG W T, JIAN S S, REY D. Non-additive network pricing with non-cooperative mobility service providers[J]. European Journal of Operational Research, 2024, 318(3): 802-824.
[27] GABRIEL S A, BERNSTEIN D. The traffic equilibrium problem with nonadditive path costs[J]. Transportation Science, 1997, 31(4): 337-348.
[28] XU M, CHEN A, QU Y C, et al. A semismooth Newton method for traffic equilibrium problem with a general nonadditive route cost[J]. Applied Mathematical Modelling, 2011, 35(6): 3048-3062.
[29] CHEN A, LO H K, YANG H. A self-adaptive projection and contraction algorithm for the traffic assignment problem with path-specific costs[J]. European Journal of Operational Research, 2001, 135(1): 27-41.
[30] HAN D R, LO H K. Solving non-additive traffic assignment problems: a descent method for co-coercive variational ine-qualities[J]. European Journal of Operational Research, 2004, 159(3): 529-544.
[31] AGDEPPA R P, YAMASHITA N, FUKUSHIMA M. The traffic equilibrium problem with nonadditive costs and its monotone mixed complementarity problem formulation[J]. Transportation Research Part B: Methodological, 2007, 41(8): 862-874.
[32] CHEN A, ZHOU Z, XU X D. A self-adaptive gradient projection algorithm for the nonadditive traffic equilibrium problem[J]. Computers & Operations Research, 2012, 39(2): 127-138.
[33] TAN H Q, DU M Q, CHEN A. Accelerating the gradient projection algorithm for solving the non-additive traffic equilibrium problem with the Barzilai-Borwein step size[J]. Computers & Operations Research, 2022, 141: 105723.
[34] BARZILAI J, BORWEIN J M. Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8(1): 141-148.
[35] JAYAKRISHNAN R, TSAI W T, PRASHKER J N, et al. A faster path-based algorithm for traffic assignment[C]//Proceedings of the 73rd annual Meeting of the Transportation Research Board, 1994: 75-83.
[36] XIE J, NIE Y M, LIU X B. A greedy path-based algorithm for traffic assignment[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(48): 36-44.
[37] KUMAR A, PEETA S. An improved social pressure algorithm for the static deterministic user equilibrium traffic assi-gnment problem[C]//Proceedings of the 90th Annual Meeting of the Transportation Research Board, 2011.
[38] FLORIAN M, HEARN D. Network equilibrium models and algorithms[M]//Network routing. Amsterdam: Elsevier, 1995: 485-550.
[39] FLORIAN M, CONSTANTIN I, FLORIAN D. A new look at projected gradient method for equilibrium assignment[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2090(1): 10-16.
[40] BABAZADEH A, JAVANI B, GENTILE G, et al. Reduced gradient algorithm for user equilibrium traffic assignment problem[J]. Transportmetrica A: Transport Science, 2020, 16(3): 1111-1135.
[41] PANICUCCI B, PAPPALARDO M, PASSACANTANDO M. A path-based double projection method for solving the asymmetric traffic network equilibrium problem[J]. Optimization Letters, 2007, 1(2): 171-185.
[42] PEREDERIEIEVA O, RAITH A, SCHMIDT M. Non-additive shortest path in the context of traffic assignment[J]. European Journal of Operational Research, 2018, 268(1): 325-338.
[43] FENG L Y, XIE J, NIE Y M, et al. Efficient algorithm for the traffic assignment problem with side constraints[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(4): 129-139.
[44] XU Z D, XIE J, LIU X B, et al. Hyperpath-based algorithms for the transit equilibrium assignment problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 143: 102102.
[45] ZHANG H G, LIU Z Y, WANG J, et al. A novel flow update policy in solving traffic assignment problems: successive over relaxation iteration method[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 174: 103111.
[46] DU M Q, TAN H Q, CHEN A. A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models[J]. European Journal of Operational Research, 2021, 290(3): 982-999.
[47] CHEN A, XU X D, RYU S, et al. A self-adaptive Armijo stepsize strategy with application to traffic assignment models and algorithms[J]. Transportmetrica A: Transport Science, 2013, 9(8): 695-712.
[48] ZHOU B, GAO L, DAI Y H. Gradient methods with adaptive step-sizes[J]. Computational Optimization and Applic-ations, 2006, 35(1): 69-86.
[49] DIAL R B. A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration[J]. Transportation Research Part B: Methodological, 2006, 40(10): 917-936. |