[1] CORRELL N, BEKRIS K E, BERENSON D, et al. Analysis and observations from the first Amazon picking challenge[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(1): 172-188.
[2] SUáREZ-RUIZ F, ZHOU X, PHAM Q C. Can robots assemble an IKEA chair?[J]. Science Robotics, 2018, 3(17): eaat6385.
[3] EDMONDS M, GAO F, XIE X, et al. Feeling the force: integrating force and pose for fluent discovery through imitation learning to open medicine bottles[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2017: 3530-3537.
[4] MILLER A T, KNOOP S, CHRISTENSEN H I, et al. Automatic grasp planning using shape primitives[C]//Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2003: 1824-1829.
[5] MORRISON D, LEITNER J, CORKE P. Closing the loop for robotic grasping: a real-time, generative grasp synthesis approach[C]//Proceedings of the Robotics: Science and Systems XIV. Robotics: Science and Systems Foundation, 2018.
[6] 闫明, 陶大鹏, 普园媛. 面向工业零件分拣系统的低纹理目标检测[J]. 中国图象图形学报, 2022, 27(8): 2418-2429.
YAN M, TAO D P, PU Y Y. Texture-less object detection method for industrial components picking system[J]. Journal of Image and Graphics, 2022, 27(8): 2418-2429.
[7] XU R N, CHU F J, VELA P A. GKNet: : grasp keypoint network for grasp candidates detection[J]. International Journal of Robotics Research, 2022, 41(4): 361-389.
[8] MAHLER J, MATL M, SATISH V, et al. Learning ambidextrous robot grasping policies[J]. Science Robotics, 2019, 4(26): eaau4984.
[9] TEN PAS A, GUALTIERI M, SAENKO K, et al. Grasp pose detection in point clouds[J]. International Journal of Robotics Research, 2017, 36(13/14): 1455-1473.
[10] 孙国栋, 贾俊杰, 李明晶, 等. 杂乱场景下小物体抓取检测研究[J]. 中国图象图形学报, 2024, 29(2): 468-477.
SUN G D, JIA J J, LI M J, et al. Small object grasping detection in cluttered scenes[J]. Journal of Image and Graphics, 2024, 29(2): 468-477.
[11] LIANG H Z, MA X J, LI S, et al. PointNetGPD: detecting grasp configurations from point sets[C]//Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 3629-3635.
[12] FISCHINGER D, WEISS A, VINCZE M. Learning grasps with topographic features[J]. International Journal of Robotics Research, 2015, 34(9): 1167-1194.
[13] MOUSAVIAN A, EPPNER C, FOX D. 6-DOF GraspNet: variational grasp generation for object manipulation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2901-2910.
[14] 徐衍, 林云汉, 闵华松. 杂乱场景中多尺度注意力特征融合抓取检测网络[J]. 计算机系统应用, 2024, 33(5): 76-84.
XU Y, LIN Y H, MIN H S. Grasping detection network of multi-scale attention feature fusion in cluttered scenes[J]. Computer Systems and Applications, 2024, 33(5): 76-84.
[15] LI Y M, KONG T, CHU R H, et al. Simultaneous semantic and collision learning for 6-DoF grasp pose estimation[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2021: 3571-3578.
[16] QIN Y Z, CHEN R, ZHU H, et al. S4G: amodal single-view single-shot SE(3) grasp detection in cluttered scenes[J]. arXiv: 1910.14218, 2019.
[17] BREYER M, CHUNG J J, OTT L, et al. Volumetric grasping network: real-time 6 DOF grasp detection in clutter[C]//Proceedings of the Conference on Robot Learning, 2021.
[18] NI P Y, ZHANG W G, ZHU X X, et al. PointNet++ grasping: learning an end-to-end spatial grasp generation algorithm from sparse point clouds[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 3619-3625.
[19] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114.
[20] SUNDERMEYER M, MOUSAVIAN A, TRIEBEL R, et al. Contact-GraspNet: efficient 6-DoF grasp generation in cluttered scenes[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 13438-13444.
[21] FANG H S, WANG C X, GOU M H, et al. GraspNet-1Billion: a large-scale benchmark for general object grasping[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11441-11450.
[22] WANG C X, FANG H S, GOU M H, et al. Graspness discovery in clutters for fast and accurate grasp detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 15944-15953.
[23] CHOY C, GWAK J, SAVARESE S. 4D spatio-temporal Conv-Nets: minkowski convolutional neural networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3070-3079.
[24] MA H X, HUANG D. Towards scale balanced 6-DoF grasp detection in cluttered scenes[C]//Proceedings of the Conference on Robot Learning, 2022.
[25] LIU J R, ZHANG R, FANG H S, et al. Target-referenced reactive grasping for dynamic objects[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 8824-8833.
[26] CHU F J, XU R N, VELA P A. Real-world multiobject, multigrasp detection[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3355-3362.
[27] GOU M H, FANG H S, ZHU Z D, et al. RGB matters: learning 7-DoF grasp poses on monocular RGBD images[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 13459-13466. |