
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (16): 76-105.DOI: 10.3778/j.issn.1002-8331.2501-0374
• Research Hotspots and Reviews • Previous Articles Next Articles
JIANG Zhengfeng, LI Chunqing, YANG Xiuzeng, LI Xichun, LIU Xuefei, MO Jie'an, HAN Lingbo
Online:2025-08-15
Published:2025-08-15
蒋正锋,李春青,杨秀增,李熙春,柳雪飞,莫洁安,韩凌波
JIANG Zhengfeng, LI Chunqing, YANG Xiuzeng, LI Xichun, LIU Xuefei, MO Jie'an, HAN Lingbo. Survey of Grey Wolf Optimization Algorithm[J]. Computer Engineering and Applications, 2025, 61(16): 76-105.
蒋正锋, 李春青, 杨秀增, 李熙春, 柳雪飞, 莫洁安, 韩凌波. 灰狼优化算法研究综述[J]. 计算机工程与应用, 2025, 61(16): 76-105.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2501-0374
| [1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. [2] DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39. [3] SPIVAK M. The wisdom of the hive: the social physiology of honey bee colonies[J]. Annals of the Entomological Society of America, 1996, 89(6): 907-908. [4] 刘长平, 叶春明. 一种新颖的仿生群智能优化算法: 萤火虫算法[J]. 计算机应用研究, 2011, 28(9): 3295-3297. LIU C P, YE C M. Novel bioinspired swarm intelligence optimization algorithm: firefly algorithm[J]. Application Research of Computers, 2011, 28(9): 3295-3297. [5] YANG X S. A new metaheuristic bat-inspired algorithm[M]//Nature inspired cooperative strategies for optimization. Berlin, Heidelberg: Springer, 2010: 65-74. [6] YANG X S, DEB S. Cuckoo search via Lévy flights[C]//Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing. Piscataway: IEEE, 2009: 210-214. [7] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. [8] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [9] 张铸, 姜金美, 张小平. 改进灰狼优化算法的永磁同步电机多参数辨识[J]. 电机与控制学报, 2022, 26(10): 119-129. ZHANG Z, JIANG J M, ZHANG X P. Multi-parameter identification of permanent magnet synchronous motor based on improved grey wolf optimization algorithm[J]. Electric Machines and Control, 2022, 26(10): 119-129. [10] 崔靖凯, 赛华阳, 张恩阳, 等. 基于灰狼算法的模块化关节摩擦辨识和补偿[J]. 光学精密工程, 2021, 29(11): 2683-2691. CUI J K, SAI H Y, ZHANG E Y, et al. Identification and compensation of friction for modular joints based on grey wolf optimizer[J]. Optics and Precision Engineering, 2021, 29(11): 2683-2691. [11] 孟耀, 张秀凤, 陈雨农. 基于改进灰狼算法的船舶数学模型参数辨识[J]. 哈尔滨工程大学学报, 2023, 44(8): 1304-1312. MENG Y, ZHANG X F, CHEN Y N. Parameter identification of a ship mathematical model based on the modified grey wolf algorithm[J]. Journal of Harbin Engineering University, 2023, 44(8): 1304-1312. [12] 黄戈文, 蔡延光, 戚远航, 等. 自适应遗传灰狼优化算法求解带容量约束的车辆路径问题[J]. 电子学报, 2019, 47(12): 2602-2610. HUANG G W, CAI Y G, QI Y H, et al. Adaptive genetic grey wolf optimizer algorithm for capacitated vehicle routing problem[J]. Acta Electronica Sinica, 2019, 47(12): 2602-2610. [13] 石春花, 刘环. 基于正余双弦自适应灰狼优化算法的医药物流配送路径规划[J]. 数学的实践与认识, 2020, 50(14): 114-127. SHI C H, LIU H. Medical logistics distribution path planning based on sine cosine and adaptive gray wolf optimization algorithm[J]. Mathematics in Practice and Theory, 2020, 50(14): 114-127. [14] 刘志强, 何丽, 袁亮, 等. 采用改进灰狼算法的移动机器人路径规划[J]. 西安交通大学学报, 2022, 56(10): 49-60. LIU Z Q, HE L, YUAN L, et al. Path planning of mobile robot based on TGWO algorithm[J]. Journal of Xi??an Jiaotong University, 2022, 56(10): 49-60. [15] 李忠兵, 蒋川东, 梁海波, 等. 粗精选策略二进制灰狼优化算法用于红外光谱特征选择[J]. 光谱学与光谱分析, 2023, 43(10): 3067-3074. LI Z B, JIANG C D, LIANG H B, et al. Rough and fine selection strategy binary gray wolf optimization algorithm for infrared spectral feature selection[J]. Spectroscopy and Spectral Analysis, 2023, 43(10): 3067-3074. [16] 侯钰哲, 李舜酩, 龚思琪, 等. 滚动轴承故障特征选择的Filter与改进灰狼优化混合算法[J]. 计算机集成制造系统, 2023, 29(5): 1452-1461. HOU Y Z, LI S M, GONG S Q, et al. Hybrid algorithm of filter and improved gray wolf optimization for fault feature selection of rolling bearing[J]. Computer Integrated Manufacturing Systems, 2023, 29(5): 1452-1461. [17] 宋玉生, 刘光宇, 朱凌, 等. 改进的灰狼优化算法在SVM参数优化中的应用[J]. 传感器与微系统, 2022, 41(9): 151-155. SONG Y S, LIU G Y, ZHU L, et al. Application of improved GWO algorithm in SVM parameter optimization[J]. Transducer and Microsystem Technologies, 2022, 41(9): 151-155. [18] 田宇, 张付军, 崔涛, 等. 基于灰狼算法的柴油机高海拔油气参数优化[J]. 车用发动机, 2023(6): 54-60. TIAN Y, ZHANG F J, CUI T, et al. Optimization of high-altitude fuel injection and turbocharging parameters for diesel engine based on grey wolf algorithm[J]. Vehicle Engine, 2023(6): 54-60. [19] 刘勍, 黄金, 张亚亚, 等. 基于灰狼优化算法的PCNN中药材显微图像分割[J]. 信阳师范学院学报(自然科学版), 2024, 37(1): 120-126. LIU Q, HUANG J, ZHANG Y Y, et al. Microscopic image segmentation of Chinese herbal medicine based on gray wolf optimization PCNN algorithm[J]. Journal of Xinyang Normal University (Natural Science Edition), 2024, 37(1): 120-126. [20] FARIS H, ALJARAH I, AL-BETAR M A, et al. Grey wolf optimizer: a review of recent variants and applications[J]. Neural Computing and Applications, 2018, 30(2): 413-435. [21] ZHANG Y, WANG Q, LI Z, et al. Hybrid GWO-SCA for large-scale optimization problems[J]. Expert Systems with Applications, 2024, 238: 121-135. [22] KENNEDY J, EBERHART R, SHI Y, et al. Adaptive PSO with dynamic inertia weight for high-dimensional optimization[J]. Swarm and Evolutionary Computation, 2023, 79: 200-215. [23] WANG L, ZHANG H, LIU Y, et al. PSO in noisy environments: a robustness analysis[J]. Applied Soft Computing, 2021, 105: 107-120. [24] GOLDBERG D E, DEB K, THIERENS D, et al. Multi-population GA for complex optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(4): 621-635. [25] CHEN X, TANG S, ZHOU M, et al. Adaptive GA with elite preservation for feature selection[J]. Information Sciences, 2023, 580: 1-18. [26] STORN R, PRICE K, LAMPINEN J, et al. DE with adaptive mutation strategies for engineering design[J]. Expert Systems with Applications, 2023, 214: 119-134. [27] DAS S, SUGANTHAN P N, MALLIPEDDI R, et al. DE in noisy optimization: a statistical evaluation[J]. Swarm and Evolutionary Computation, 2021, 64: 100-115. [28] DORIGO M, BIRATTARI M, STUTZLE T, et al. ACO for dynamic traveling salesman problems[J]. Computers & Operations Research, 2022, 138: 10-120. [29] LI Y, ZHANG W, WANG J, et al. Improved ACO with pheromone disturbance for path planning[J]. Applied Intelligence, 2023, 53(5): 1-15. [30] KARABOGA D, AKAY B, OZTURK C, et al. ABC for multimodal optimization: a comparative study[J]. Soft Computing, 2021, 25(10): 789-805. [31] ZHU G, KWONG S, ZHANG Q, et al. Hybrid ABC-GA for feature selection[J]. Knowledge-Based Systems, 2024, 290: 111-125. [32] MIRJALILI S, LEWIS A, SADIQ A S, et al. SCA with dynamic exploration-exploitation balance[J]. Applied Soft Computing, 2021, 106: 107-120. [33] LI X, WANG H, CHEN Y, et al. Hybrid SCA-GWO for image segmentation[J]. Pattern Recognition, 2023, 135: 109-123. [34] MIRJALILI S, LEWIS A, SADIQLI M, et al. WOA for constrained optimization problems[J]. Expert Systems with Applications, 2022, 198: 116-129. [35] WANG H, ZHANG L, LI M, et al. Improved WOA with Levy flight for engineering design[J]. Advances in Engineering Software, 2023, 177: 103-115. [36] WANG J S, LI S X. An improved grey wolf optimizer based on differential evolution and elimination mechanism[J]. Scientific Reports, 2019, 9: 7181. [37] HUANG W C, ZHANG G G. Bearing fault-detection method based on improved grey wolf algorithm to optimize parameters of multistable stochastic resonance[J]. Sensors, 2023, 23(14): 6529. [38] WANG S Q, ZHANG X. Production scheduling of prefabricated components considering delivery methods[J]. Scientific Reports, 2023, 13: 15094. [39] WANG G L, DING P J, HUANG C S, et al. A novel lifting point location optimization method of transmission line tower based on improved grey wolf optimizer[J]. Scientific Reports, 2023, 13: 21914. [40] OU Y, YIN P F, MO L P. An improved grey wolf optimizer and its application in robot path planning[J]. Biomimetics, 2023, 8(1): 84. [41] BILAL A, SHAFIQ M, FANG F, et al. IGWO-IVNet3: DL-based automatic diagnosis of lung nodules using an improved gray wolf optimization and InceptionNet-V3[J]. Sensors, 2022, 22(24): 9603. [42] 周凌云, 丁立新, 彭虎, 等. 一种邻域重心反向学习的粒子群优化算法[J]. 电子学报, 2017, 45(11): 2815-2824. ZHOU L Y, DING L X, PENG H, et al. Neighborhood centroid opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2017, 45(11): 2815-2824. [43] 龙文, 蔡绍洪, 焦建军, 等. 一种改进的灰狼优化算法[J]. 电子学报, 2019, 47(1): 169-175. LONG W, CAI S H, JIAO J J, et al. An improved grey wolf optimization algorithm[J]. Acta Electronica Sinica, 2019, 47(1): 169-175. [44] 田书欣, 刘浪, 魏书荣, 等. 基于改进灰狼优化算法的配电网动态重构[J]. 电力系统保护与控制, 2021, 49(16): 1-11. TIAN S X, LIU L, WEI S R, et al. Dynamic reconfiguration of a distribution network based on an improved grey wolf optimization algorithm[J]. Power System Protection and Control, 2021, 49(16): 1-11. [45] 商立群, 李洪波, 侯亚东, 等. 基于特征选择和优化极限学习机的短期电力负荷预测[J]. 西安交通大学学报, 2022, 56(4): 165-175. SHANG L Q, LI H B, HOU Y D, et al. Short-term power load forecasting based on feature selection and optimized extreme learning machine[J]. Journal of Xi’an Jiaotong University, 2022, 56(4): 165-175. [46] 赵超, 王斌, 孙志新, 等. 基于改进灰狼算法的独立微电网容量优化配置[J]. 太阳能学报, 2022, 43(1): 256-262. ZHAO C, WANG B, SUN Z X, et al. Optimal configuration optimization of islanded microgrid using improved grey wolf optimizer algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 256-262. [47] 张铸, 饶盛华, 张仕杰. 基于自适应正态云模型的灰狼优化算法[J]. 控制与决策, 2021, 36(10): 2562-2568. ZHANG Z, RAO S H, ZHANG S J. Grey wolf optimization algorithm based on adaptive normal cloud model[J]. Control and Decision, 2021, 36(10): 2562-2568. [48] 蔡国伟, 刘旭, 张旺, 等. 基于改进灰狼优化算法的分布式电源优化配置[J]. 太阳能学报, 2019, 40(1): 134-141. CAI G W, LIU X, ZHANG W, et al. Optimal configuration of distributed generation based on improved grey optimization algorithm[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 134-141. [49] 方一鸣, 赵晓东, 张攀, 等. 基于改进灰狼算法和多核极限学习机的铁水硅含量预测建模[J]. 控制理论与应用, 2020, 37(7): 1644-1654. FANG Y M, ZHAO X D, ZHANG P, et al. Prediction modeling of silicon content in liquid iron based on multiple kernel extreme learning machine and improved grey wolf optimizer[J]. Control Theory & Applications, 2020, 37(7): 1644-1654. [50] ZHENG P, MU C L, HU X G, et al. Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source[J]. Journal of Mathematical Analysis and Applications, 2015, 424(1): 509-522. [51] 黄晨晨, 魏霞, 黄德启, 等. 求解高维复杂函数的混合蛙跳-灰狼优化算法[J]. 控制理论与应用, 2020, 37(7): 1655-1666. HUANG C C, WEI X, HUANG D Q, et al. Shuffled frog leaping grey wolf algorithm for solving high dimensional complex functions[J]. Control Theory & Applications, 2020, 37(7): 1655-1666. [52] 李长安, 谢宗奎, 吴忠强, 等. 改进灰狼算法及其在港口泊位调度中的应用[J]. 哈尔滨工业大学学报, 2021, 53(1): 101-108. LI C A, XIE Z K, WU Z Q, et al. Improved grey wolf algorithm and its application in port berth scheduling[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 101-108. [53] 华罗庚, 王元. 数论在近似分析中的应用[M]. 北京: 科学出版社, 1978: 83-86. HUA L G, WANG Y. Application of number theory in approximate analysis[M]. Beijing: Science Press, 1978: 83-86. [54] MITTAL N, SINGH U, SOHI B S. Modified grey wolf optimizer for global engineering optimization[J]. Applied Computational Intelligence and Soft Computing, 2016(1): 7950348. [55] 文昌俊, 陈凡, 陈洋洋, 等. 引入改进迭代局部搜索的灰狼算法及应用[J]. 电子测量技术, 2023, 46(23): 30-42. WEN C J, CHEN F, CHEN Y Y, et al. Improved iterative local search grey wolf algorithm and its application[J]. Electronic Measurement Technology, 2023, 46(23): 30-42. [56] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway: IEEE, 2005: 695-701. [57] 王梦璐, 李连忠. 动态反向搜索更新位置的改进灰狼优化算法[J]. 计算机工程与应用, 2021, 57(18): 86-96. WANG M L, LI L Z. Improved grey wolf optimization algorithm based on dynamic reverse search for updated position[J]. Computer Engineering and Applications, 2021, 57(18): 86-96. [58] 孙辉, 邓志诚, 赵嘉, 等. 混合均值中心反向学习粒子群优化算法[J]. 电子学报, 2019, 47(9): 1809-1818. SUN H, DENG Z C, ZHAO J, et al. Hybrid mean center opposition-based learning particle swarm optimization[J]. Acta Electronica Sinica, 2019, 47(9): 1809-1818. [59] 何杰光, 彭志平, 崔得龙, 等. 一种多反向学习的教与学优化算法[J]. 工程科学与技术, 2019, 51(6): 159-167. HE J G, PENG Z P, CUI D L, et al. Multi-opposition teaching-learning-based optimization[J]. Advanced Engineering Sciences, 2019, 51(6): 159-167. [60] 张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180. ZHANG D M, XU H, WANG Y R, et al. Whale optimization algorithm for embedded Circle mapping and onedimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173-1180. [61] 张兴辉, 樊秀梅, 阿喜达, 等. 反向学习的灰狼算法优化及其在交通流预测中的应用[J]. 电子学报, 2021, 49(5): 879-886. ZHANG X H, FAN X M, A X D, et al. Grey wolf optimization based on opposition learning and its application in traffic flow forecasting[J]. Acta Electronica Sinica, 2021, 49(5): 879-886. [62] 韩驰, 熊伟. 基于改进灰狼算法优化SVR的航天侦察装备效能评估[J]. 系统工程与电子技术, 2021, 43(10): 2902-2910. HAN C, XIONG W. Operational effectiveness evaluation of space reconnaissance equipment based on SVR optimized by improved grey wolf optimizer[J]. Systems Engineering and Electronics, 2021, 43(10): 2902-2910. [63] 顾清华, 李学现, 卢才武, 等. 求解高维复杂函数的遗传-灰狼混合算法[J]. 控制与决策, 2020, 35(5): 1191-1198. GU Q H, LI X X, LU C W, et al. Hybrid genetic grey wolf algorithm for high dimensional complex function optimization[J]. Control and Decision, 2020, 35(5): 1191-1198. [64] 傅文渊, 李国刚, 王燕琼. 区间长度可变的反向混沌优化算法[J]. 电子学报, 2019, 47(1): 113-121. FU W Y, LI G G, WANG Y Q. Opposite based chaos optimization algorithm with variable interval length[J]. Acta Electronica Sinica, 2019, 47(1): 113-121. [65] 王伟, 龙文. 动态透镜成像学习人工兔优化算法及应用[J]. 广西科学, 2023, 30(4): 735-744. WANG W, LONG W. Dynamic lens imaging learning artificial rabbits optimization algorithm and its applications[J]. Guangxi Sciences, 2023, 30(4): 735-744. [66] 穆晓霞, 郑李婧. 基于F-score和二进制灰狼优化的肿瘤基因选择方法[J]. 南京师大学报 (自然科学版), 2024, 47(1): 111-120. MU X X, ZHENG L J. Tumor gene selection based on F-score and binary grey wolf optimization[J]. Journal of Nanjing Normal University (Natural Science Edition), 2024, 47(1): 111-120. [67] 毛明轩, 许钊, 崔立闯, 等. 基于改进灰狼优化算法的光伏阵列多峰MPPT研究[J]. 太阳能学报, 2023, 44(3): 450-456. MAO M X, XU Z, CUI L C, et al. Research on multi-peak mppt of photovoltaic array based on modified gray wolf optimization algorithm[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 450-456. [68] 赵希梅, 陈广国, 金鸿雁. 基于改进灰狼优化算法的PMSM滑模自抗扰控制[J]. 电机与控制学报, 2022, 26(11): 132-140. ZHAO X M, CHEN G G, JIN H Y. Sliding mode active disturbance rejection control for PMSM based on improved grey wolf optimization algorithm[J]. Electric Machines and Control, 2022, 26(11): 132-140. [69] 晏福, 徐建中, 李奉书. 混沌灰狼优化算法训练多层感知器[J]. 电子与信息学报, 2019, 41(4): 872-879. YAN F, XU J Z, LI F S. Training multi-layer perceptrons using chaos grey wolf optimizer[J]. Journal of Electronics & Information Technology, 2019, 41(4): 872-879. [70] 何思名, 袁智勇, 雷金勇, 等. 基于改进灰狼算法的DG接入配电网反时限过电流保护定值优化[J]. 电力系统保护与控制, 2021, 49(18): 173-181. HE S M, YUAN Z Y, LEI J Y, et al. Optimal setting method of inverse time over-current protection for a distribution network based on the improved grey wolf optimization[J]. Power System Protection and Control, 2021, 49(18): 173-181. [71] 张阳, 周溪召. 求解全局优化问题的改进灰狼算法[J]. 上海理工大学学报, 2021, 43(1): 73-82. ZHANG Y, ZHOU X Z. Modified grey wolf optimization algorithm for global optimization problems[J]. Journal of University of Shanghai for Science and Technology, 2021, 43(1): 73-82. [72] 李云淏, 咸日常, 张海强, 等. 基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法[J]. 电网技术, 2023, 47(4): 1470-1478. LI Y H, XIAN R C, ZHANG H Q, et al. Fault diagnosis for power transformers based on improved grey wolf algorithm coupled with least squares support vector machine[J]. Power System Technology, 2023, 47(4): 1470-1478. [73] 薛阳, 燕宇铖, 贾巍, 等. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报, 2023, 44(7): 207-213. XUE Y, YAN Y C, JIA W, et al. Photovoltaic power prediction model based on IGWO-LSTM[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 207-213. [74] 陈延展, 胡浩, 任紫畅, 等. 基于XGBoost和改进灰狼优化算法的催化裂化汽油精制装置的辛烷值损失模型分析[J]. 石油学报 (石油加工), 2022, 38(1): 208-219. CHEN Y Z, HU H, REN Z C, et al. Model analysis of gasoline octane loss in catalytic cracking post-refining unit based on XGBoost and improved gray wolf optimization algorithm[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(1): 208-219. [75] 张文胜, 郝孜奇, 朱冀军, 等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(2): 196-203. ZHANG W S, HAO Z Q, ZHU J J, et al. BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 196-203. [76] 姜天华. 基于灰狼优化算法的低碳车间调度问题[J]. 计算机集成制造系统, 2018, 24(10): 2428-2435. JIANG T H. Low-carbon workshop scheduling problem based on grey wolf optimization[J]. Computer Integrated Manufacturing Systems, 2018, 24(10): 2428-2435. [77] 魏雪, 吴清. 分段复合多尺度模糊熵和IGWO-SVM的脑电情感识别[J]. 计算机应用研究, 2019, 36(11): 3310-3314. WEI X, WU Q. EEG emotion recognition based on piecewise complex multi-scale fuzzy entropy and IGWO-SVM algorithm[J]. Application Research of Computers, 2019, 36(11): 3310-3314. [78] 魏政磊, 赵辉, 李牧东, 等. 控制参数值非线性调整策略的灰狼优化算法[J]. 空军工程大学学报 (自然科学版), 2016, 17(3): 68-72. WEI Z L, ZHAO H, LI M D, et al. A grey wolf optimization algorithm based on nonlinear adjustment strategy of control parameter[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(3): 68-72. [79] KUMAR V, KUMAR D. An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems[J]. Advances in Engineering Software, 2017, 112: 231-254. [80] RODRIGUEZ L, CASTILLO O, GARCIA M, et al. Dynamic simultaneous adaptation of parameters in the grey wolf optimizer using fuzzy logic[C]//Proceedings of the 2017 IEEE International Conference on Fuzzy Systems. Piscataway: IEEE, 2017: 1-6. [81] 龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10): 2148-2164. LONG W, WU T B, TANG M Z, et al. Grey wolf optimizer algorithm based on lens imaging learning strategy[J]. Acta Automatica Sinica, 2020, 46(10): 2148-2164. [82] 时维国, 宋存利. 求解混合流水车间调度问题的改进灰狼算法[J]. 计算机集成制造系统, 2021, 27(11): 3196-3208. SHI W G, SONG C L. Improved grey wolf optimization for solving hybrid flow shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2021, 27(11): 3196-3208. [83] 韩太林, 张延雪, 王啸, 等. 改进型灰狼算法在热电偶动态补偿中的应用[J]. 控制与决策, 2021, 36(1): 61-67. HAN T L, ZHANG Y X, WANG X, et al. Application of improved grey wolf algorithm in dynamic compensation of thermocouple[J]. Control and Decision, 2021, 36(1): 61-67. [84] ZHAN Z H, ZHANG J, LI Y, et al. Orthogonal learning particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(6): 832-847. [85] 蒙凯, 唐秋华, 张子凯, 等. 基于改进多目标灰狼算法的装配线平衡与预防维护集成优化[J]. 计算机集成制造系统, 2020, 26(12): 3302-3312. MENG K, TANG Q H, ZHANG Z K, et al. Integrated optimization of assembly line balance and preventive maintenance based on improved multi-objective grey wolf algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(12): 3302-3312. [86] ZHANG J Q, LIU K, TAN Y, et al. Random black hole particle swarm optimization and its application[C]//Proceedings of the 2008 International Conference on Neural Networks and Signal Processing. Piscataway: IEEE, 2008: 359-365. [87] 耿志强, 曾荣甫, 徐圆, 等. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087. GENG Z Q, ZENG R F, XU Y, et al. Intrusion detection of industrial control system based on grey wolf optimization integrated random black hole[J]. CIESC Journal, 2020, 71(3): 1080-1087. [88] 杜江, 袁中华, 王景芹. 一种基于灰预测理论的混合蛙跳算法[J]. 电工技术学报, 2017, 32(15): 190-198. DU J, YUAN Z H, WANG J Q. Shuffled frog leaping algorithm based on grey prediction theory[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 190-198. [89] 张新明, 姜云, 刘尚旺, 等. 灰狼与郊狼混合优化算法及其聚类优化[J]. 自动化学报, 2022, 48(11): 2757-2776. ZHANG X M, JIANG Y, LIU S W, et al. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization[J]. Acta Automatica Sinica, 2022, 48(11): 2757-2776. [90] 刘恺文, 曹政才. 基于改进灰狼优化算法的自动化立体仓库作业能量优化调度[J]. 计算机集成制造系统, 2020, 26(2): 376-383. LIU K W, CAO Z C. Energy-optimized task scheduling of automated warehouse based on improved grey wolf optimizer[J]. Computer Integrated Manufacturing Systems, 2020, 26(2): 376-383. [91] HEIDARI A A, PAHLAVANI P. An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J]. Applied Soft Computing, 2017, 60: 115-134. [92] CHEN K, ZHOU F Y, LIU A L. Chaotic dynamic weight particle swarm optimization for numerical function optimization[J]. Knowledge-Based Systems, 2018, 139: 23-40. [93] UDWADIA F E, GUTTALU R S. Chaotic dynamics of a piecewise cubic map[J]. Physical Review A, 1989, 40(7): 4032-4044. [94] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34. LI D Y, LIU C Y. Study on the universality of the normal cloud model[J]. Strategic Study of CAE, 2004, 6(8): 28-34. [95] 孟荣华, 李世红, 罗强, 等. 基于十进制灰狼优化算法的金属板材切割调度问题[J]. 计算机集成制造系统, 2020, 26(4): 1011-1018. MENG R H, LI S H, LUO Q, et al. Metal plate cutting scheduling based on decimal grey wolf optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 1011-1018. [96] 彭琨琨, 李新宇, 高亮, 等. 可调加工时间炼钢-连铸的灰狼优化调度算法[J]. 计算机集成制造系统, 2020, 26(1): 58-65. PENG K K, LI X Y, GAO L, et al. Grey wolf optimizer scheduling algorithm for steelmaking-continuous casting with adjustable processing times[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 58-65. [97] SUN W J, ZOU Y, ZHANG X D, et al. Joint routing and scheduling optimization of in-vehicle time-sensitive networks based on improved grey wolf optimizer[J]. IEEE Internet of Things Journal, 2024, 11(4): 7093-7106. [98] CHEN S L, ZHENG J G, ZHANG W Q. A cooperative grey wolf optimizer for the joint flowshop scheduling problem with sequence-dependent set-up time[J]. Engineering Optimization, 2025, 57(3): 739-761. [99] 朱安, 陈力. 配置弹簧阻尼空间机器人基于灰狼优化算法的双臂捕获卫星操作缓冲柔顺控制[J]. 控制与决策, 2022, 37(11): 2779-2789. ZHU A, CHEN L. Based on grey wolf optimizer buffer and compliance control of dual-arm space robot capture satellite operation with spring-damper device[J]. Control and Decision, 2022, 37(11): 2779-2789. [100] 耿莹蕊, 沈欢超, 倪鸿飞, 等. 近红外光谱结合灰狼算法优化支持向量机实现烟叶产地快速鉴别[J]. 光谱学与光谱分析, 2022, 42(9): 2830-2835. GENG Y R, SHEN H C, NI H F, et al. Support vector machine optimized by near-infrared spectroscopic technique combined with grey wolf optimizer algorithm to realize rapid identification of tobacco origin[J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2830-2835. [101] 刘再涛, 王震, 贺建军, 等. 基于灰狼算法优化的多隐层径向基神经网络铅锌烧结返粉料水分预测[J]. 中南大学学报 (自然科学版), 2023, 54(2): 754-764. LIU Z T, WANG Z, HE J J, et al. Moisture prediction of lead zinc sintering recycled-fine-ore based on multi-hidden-layer radial basis function neural network optimized by gray wolf optimizer[J]. Journal of Central South University (Science and Technology), 2023, 54(2): 754-764. [102] MOHAKUD R, DASH R. Designing a grey wolf optimization based hyper-parameter optimized convolutional neural network classifier for skin cancer detection[J]. Journal of King Saud University (Computer and Information Sciences), 2022, 34(8): 6280-6291. [103] LAWAL A I, OLAJUYI S I, KWON S, et al. Prediction of blast-induced ground vibration using GPR and blast-design parameters optimization based on novel grey-wolf optimization algorithm[J]. Acta Geophysica, 2021, 69(4): 1313-1324. [104] 孙东, 汪若尘, 丁仁凯, 等. 基于灰狼算法的矿用自卸车油气悬架半主动控制[J]. 中国机械工程, 2023, 34(4): 490-497. SUN D, WANG R C, DING R K, et al. Semi-active control of hydro-pneumatic suspensions for mining dump trucks based on grey wolf algorithm[J]. China Mechanical Engineering, 2023, 34(4): 490-497. [105] SERHAT K. Hybrid PSO-GWO optimization for CNN hyperparameter tuning in cardiovascular disease detection[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 14(1): 87-97. [106] 穆璐璐, 段欢欢, 肖媛, 等. 基于反向传播神经网络和灰狼优化算法的离心式人工心脏泵叶片参数优化[J]. 生物医学工程学杂志, 2024, 41(6): 1221-1226. MU L L, DUAN H H, XIAO Y, et al. Optimization of centrifugal artificial heart pump blade parameters based on back propagation neural network and grey wolf optimization algorithm[J]. Journal of Biomedical Engineering, 2024, 41(6): 1221-1226. [107] 夏延秋, 王春丽, 冯欣, 等. 基于灰狼算法优化GRNN的润滑油摩擦磨损性能预测[J]. 摩擦学学报, 2023, 43(8): 947-955. XIA Y Q, WANG C L, FENG X, et al. Prediction of friction and wear performance of lubricating oil based on GRNN optimized by GWO[J]. Tribology, 2023, 43(8): 947-955. [108] CHITRAKANT B N S. Hybrid deep learning classifier with grey wolf shuffled shepherd optimization for big data[J]. International Journal of Swarm Intelligence Research, 2022, 13(1): 1-20. [109] KALI A S, BOUGHACI D. Improving extreme learning machine model using deep learning feature extraction and grey wolf optimizer: application to image classification[J]. Intelligent Decision Technologies, 2024, 18(1): 457-483. [110] RANI J C, NAGARAJU D. Hybrid particle swarm and grey wolf optimization for CNN hyper-parameter tuning in Indian classical dance classification[J]. Knowledge and Information Systems, 2022, 64(9): 2141-2154. [111] REZA M F, FARDAD F, ALI H, et al. Speech emotion recognition via deep CNN and grey wolf optimization[J]. Circuits, Systems, and Signal Processing, 2022, 42(1): 449-492. [112] CANSU S, EREN B, EROL E. Grey wolf optimization for training sigma-pi neural networks[J]. Granular Computing, 2023, 8(5): 981-989. [113] SUN Y, ZHANG J, ZHANG Y. Improved grey wolf algorithm enhances ESN for porosity prediction[J]. ACS Omega, 2023, 8(23): 21182-21194. [114] GAOFEI J, ZHIPENG L, LINGHUI H, et al. IGWO-optimized BP neural network for aluminum alloy corrosion fatigue prediction[J]. Journal of Materials Science, 2024, 59(23): 10309-10323. [115] ZHU Q, SHANKAR A, MAPLE C. Grey wolf optimizer based deep learning mechanism for music composition with data analysis[J]. Applied Soft Computing, 2024, 153: 111294. [116] 刘磊, 张海涛, 范铁彬, 等. 一种改进灰狼优化算法研究及应用[J]. 数学的实践与认识, 2021, 51(6): 236-245. LIU L, ZHANG H T, FAN T B, et al. Research of an improved gray wolf optimization algorithm and application[J]. Mathematics in Practice and Theory, 2021, 51(6): 236-245. [117] 李斐, 朱晓磊. 基于多策略融合的灰狼算法的多阈值图像分割[J]. 山东建筑大学学报, 2023, 38(4): 39-46. LI F, ZHU X L. Multi-threshold image segmentation based on grey wolf optimizer fused with multiple strategies[J]. Journal of Shandong Jianzhu University, 2023, 38(4): 39-46. [118] 许霄霄, 张昕, 姚强, 等. 基于灰狼自适应阈值分割和改进模糊增强的红外图像NSCT增强算法[J]. 电测与仪表, 2024, 61(1): 46-51. XU X X, ZHANG X, YAO Q, et al. Infrared image NSCT enhancement algorithm based on gray wolf adaptive threshold segmentation and improved fuzzy enhancement[J]. Electrical Measurement & Instrumentation, 2024, 61(1): 46-51. [119] 何煊强, 崔文涛. 基于灰狼算法的室内三维空间图像分割方法研究[J]. 遵义师范学院学报, 2023, 25(5): 81-85. HE X Q, CUI W T. Research on indoor 3D space image segmentation method based on grey wolf algorithm[J]. Journal of Zunyi Normal University, 2023, 25(5): 81-85. [120] 伍萍辉, 陈新, 张馨, 等. 基于聚类-改进灰狼算法的设施番茄分割识别方法[J]. 现代制造工程, 2021(6): 83-89. WU P H, CHEN X, ZHANG X, et al. Segmentation and recognition of facility tomato based on clustering-improved GWO algorithm[J]. Modern Manufacturing Engineering, 2021(6): 83-89. [121] DANTZIG G B, AMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91. [122] 游达章, 康亚伟, 刘攀, 等. 一种改进灰狼优化算法的移动机器人路径规划方法[J]. 机床与液压, 2021, 49(11): 1-6. YOU D Z, KANG Y W, LIU P, et al. A path planning method for mobile robot based on improved grey wolf optimizer[J]. Machine Tool & Hydraulics, 2021, 49(11): 1-6. [123] 张威, 张鑫中, 王丛佼, 等. 改进灰狼算法的变电站巡检机器人路径规划[J]. 重庆理工大学学报 (自然科学), 2023, 37(6): 129-135. ZHANG W, ZHANG X Z, WANG C J, et al. Path planning of substation inspection robots based on an improved grey wolf optimizer[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(6): 129-135. [124] 音凌一, 向凤红, 毛剑琳. 改进灰狼优化算法在特征栅格地图上的路径规划[J]. 机械科学与技术, 2023, 42(9): 1516-1526. YIN L Y, XIANG F H, MAO J L. Improved grey wolf optimization algorithm for path planning on feature grid maps[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1516-1526. [125] 廖小平, 黎宇嘉, 陈超逸, 等. 基于核主成分和灰狼优化算法的刀具磨损状态识别[J]. 计算机集成制造系统, 2020, 26(11): 3031-3039. LIAO X P, LI Y J, CHEN C Y, et al. Tool wear condition recognition based on kernel principal component and grey wolf optimizer algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(11): 3031-3039. [126] ZHOU H X, WU X H, LI Y, et al. Model optimization of a high-power commercial PEMFC system via an improved grey wolf optimization method[J]. Fuel, 2024, 357: 129589. [127] YU X B, DUAN Y C, CAI Z J. Sub-population improved grey wolf optimizer with Gaussian mutation and Lévy flight for parameters identification of photovoltaic models[J]. Expert Systems with Applications, 2023, 232: 120827. [128] PREMKUMAR M, SHANKAR N, SOWMYA R, et al. A reliable optimization framework for parameter identification of single-diode solar photovoltaic model using weighted velocity-guided grey wolf optimization algorithm and Lambert-W function[J]. IET Renewable Power Generation, 2023, 17(11): 2711-2732. [129] MAKHADMEH S N, AHMAD A O, MIRJALILI S, et al. Recent advances in multi-objective grey wolf optimizer, its versions and applications[J]. Neural Computing and Applications, 2022, 34(22): 19723-19749. [130] XIE J L, ZHANG S L, WANG H H, et al. Gray wolf optimization-based self-organizing fuzzy multi-objective evolution algorithm[J]. Soft Computing, 2022, 26(22): 12077-12092. [131] FRANCIS V U A, ARJUN B J, KUMAR P M J, et al. Statistically aided binary multi-objective grey wolf optimizer: a new feature selection approach for classification[J]. The Journal of Supercomputing, 2023, 79(12): 12869-12901. [132] AL-TASHI Q, SHAMI M T, JADID A S, et al. Enhanced multi-objective grey wolf optimizer with Levy flight and mutation operators for feature selection[J]. Computer Systems Science and Engineering, 2023, 47(2): 1937-1966. [133] DU Z G, NI S Q, PAN J S, et al. A surrogate-assisted multi-objective grey wolf optimizer for empty-heavy train allocation considering coordinated line utilization balance[J]. Journal of Bionic Engineering, 2025, 22(1): 383-397. [134] ZHANG H L, CHEN Y, ZHANG Y T, et al. Energy-saving distributed flexible job shop scheduling optimization with dual resource constraints based on integrated Q-learning multi-objective grey wolf optimizer[J]. Computer Modeling in Engineering & Sciences, 2024, 140(2): 1459-1483. [135] 陈凯, 龚毅光. 混合多目标灰狼算法求解多目标VRPTW问题[J]. 计算机工程与应用, 2024, 60(11): 309-318. CHEN K, GONG Y G. Hybrid multiple-objective grey wolf algorithm solving multi-objective vehicle routing problem with time windows[J]. Computer Engineering and Applications, 2024, 60(11): 309-318. [136] 丁璨, 王周琳, 袁召, 等. 基于多目标灰狼优化算法与RBF神经网络的真空灭弧室触头结构优化设计[J]. 高电压技术, 2024, 50(2): 543-550. DING C, WANG Z L, YUAN Z, et al. Structural optimization design of vacuum interrupter contact based on multi-objective grey wolf optimization algorithm and RBF neural network[J]. High Voltage Engineering, 2024, 50(2): 543-550. [137] 余德荧, 李厚朴, 纪兵, 等. 基于灰狼优化算法的快速选星方法[J]. 系统工程与电子技术, 2023, 45(5): 1489-1495. YU D Y, LI H P, JI B, et al. Fast satellite selection method based on grey wolf optimization algorithm[J]. Systems Engineering and Electronics, 2023, 45(5): 1489-1495. [138] 顾秋阳, 吴宝, 孙兆洋, 等. 基于改进灰狼优化的复杂网络重要节点识别算法[J]. 通信学报, 2021, 42(6): 72-83. GU Q Y, WU B, SUN Z Y, et al. Key node identification algorithm for complex network based on improved grey wolf optimization[J]. Journal on Communications, 2021, 42(6): 72-83. [139] ZHANG X Q, ZHANG Y Y, MING Z F. Improved dynamic grey wolf optimizer[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(6): 877-890. [140] THANYA T, FRANKLIN S. Grey wolf optimizer based deep learning for pancreatic nodule detection[J]. Intelligent Automation & Soft Computing, 2023, 36(1): 97-112. [141] ERDO?AN F, KARAKOYUN M, GüLCü ?. An effective binary dynamic grey wolf optimization algorithm for the 0-1 knapsack problem[J]. Multimedia Tools and Applications, 2024. DOI:10.1007/s11042-024-20121-1. |
| [1] | AN Jiale, LIU Xiaonan, HE Ming, SONG Huichao. Survey of Quantum Swarm Intelligence Optimization Algorithm [J]. Computer Engineering and Applications, 2022, 58(7): 31-42. |
| [2] | YI Junyan, SHI Xiaodong, YANG Gang. Brain Storm Optimization Based on Multi-Branch Chaotic Mutation [J]. Computer Engineering and Applications, 2022, 58(16): 129-138. |
| [3] | CHEN Yao, CHEN Si. Improved Bat Algorithm Based on Self-adaptive Doppler and Dynamic Neighborhood Strategy [J]. Computer Engineering and Applications, 2021, 57(22): 166-176. |
| [4] | LI Yali, WANG Shuqin, CHEN Qianru, WANG Xiaogang. Comparative Study of Several New Swarm Intelligence Optimization Algorithms [J]. Computer Engineering and Applications, 2020, 56(22): 1-12. |
| [5] | CHEN Yao, CHEN Si. Research on Application of Dynamic Weighted Bat Algorithm in Image Segmentation [J]. Computer Engineering and Applications, 2020, 56(14): 207-215. |
| [6] | XU Degang, ZHAO Ping. Literature Survey on Research and Application of Bat Algorithm [J]. Computer Engineering and Applications, 2019, 55(15): 1-12. |
| [7] | NIU Li1,2, HAN Xiaoting3. Two-phase co-scheduling algorithm solving cellular manufacturing scheduling problem [J]. Computer Engineering and Applications, 2013, 49(19): 232-237. |
| [8] | HAN Lian-sheng1,LUO Wei-bing2,LI Nan-xiang1. Research and improvement of greedy geographical routing protocol [J]. Computer Engineering and Applications, 2007, 43(36): 160-162. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||