
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (20): 54-74.DOI: 10.3778/j.issn.1002-8331.2412-0272
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHOU Zhenxiao, WANG Hua, WEI Dejian, CAO Hui, JIANG Liang, WANG Xicheng
Online:2025-10-15
Published:2025-10-15
周振霄,王华,魏德健,曹慧,姜良,王锡城
ZHOU Zhenxiao, WANG Hua, WEI Dejian, CAO Hui, JIANG Liang, WANG Xicheng. Research Progress of Transformers in Medical Image Segmentation[J]. Computer Engineering and Applications, 2025, 61(20): 54-74.
周振霄, 王华, 魏德健, 曹慧, 姜良, 王锡城. Transformer在医学图像分割中的研究进展[J]. 计算机工程与应用, 2025, 61(20): 54-74.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2412-0272
| [1] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2022, 44(7): 3523-3542. [2] GOLAN R, JACOB C, DENZINGER J. Lung nodule detection in CT images using deep convolutional neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2016: 243-250. [3] CHRIST P F, ETTLINGER F, GRüN F, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks[J]. arXiv:1702. 05970, 2017. [4] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [5] MAGNIER B. Edge detection: a review of dissimilarity evaluations and a proposed normalized measure[J]. Multimedia Tools and Applications, 2018, 77(8): 9489-9533. [6] NOCK R, NIELSEN F. Statistical region merging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1452-1458. [7] LIU Y J, WANG J, WU C P, et al. Fovea-UNet: detection and segmentation of lymph node metastases in colorectal cancer with deep learning[J]. BioMedical Engineering on Line, 2023, 22(1): 74. [8] GU H, GAN W, ZHANG C, et al. A 2D-3D hybrid convolutional neural network for lung lobe auto-segmentation on standard slice thickness computed tomography of patients receiving radiotherapy[J]. Biomedical Engineering Online, 2021, 20(1): 94. [9] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241. [10] YU W, FANG B, LIU Y Q, et al. Liver vessels segmentation based on 3d residual U-NET[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 250-254. [11] HUANG Q, SUN J F, DING H, et al. Robust liver vessel extra-ction using 3D U-Net with variant dice loss function[J]. Computers in Biology and Medicine, 2018, 101: 153-162. [12] IBTEHAZ N, RAHMAN M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74-87. [13] BALDEON-CALISTO M, LAI-YUEN S K. AdaResU-Net: mult-iobjective adaptive convolutional neural network for medical image segmentation[J]. Neurocomputing, 2020, 392: 325-340. [14] FRID-ADAR M, BEN-COHEN A, AMER R, et al. Improving the segmentation of anatomical structures in chest radio graphs using U-Net with an ImageNet pre-trained encoder[C]//Proceedings of the Image Analysis for Moving Organ, Breast, and Thoracic Images. Cham: Springer International Publishing, 2018: 159-168. [15] WAIKER D, DAS BAGHEL P, VARMA K R, et al. Effective semantic segmentation of lung X-ray images using U-Net architecture[C]//Proceedings of the 4th International Conference on Computing Methodologies and Communication. Piscataway: IEEE, 2020: 603-607. [16] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evalu-ation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014. [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [18] 石磊, 籍庆余, 陈清威, 等. 视觉 Transformer 在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2023, 59(8): 41-55. SHI L, JI Q Y, CHEN Q W, et al. Review of research on application of vision Transformer in medical image analysis[J]. Computer Engineering and Applications, 2023, 59(8): 41-55. [19] 周腊珍, 陈红池, 李秋霞, 等. 基于 Transformer 深度学习模型在医学图像分割中的研究进展[J]. 中国生物医学工程学报, 2024, 43(4): 467-476. ZHOU L Z, CHEN H C, LI Q X, et al. Research progress on Transformer-based deep learning models for medical image segmentation[J]. Chinese Journal of Biomedical Engineering, 2024, 43(4): 467-476. [20] 傅励瑶, 尹梦晓, 杨锋. 基于Transformer的U型医学图像分割网络综述[J]. 计算机应用, 2023, 43(5): 1584-1595. FU L Y, YIN M X, YANG F. Transformer based U-shape medical image segmentation network: a survey[J]. Journal of Computer Applications, 2023, 43(5): 1584-1595. [21] VASWANI A. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017: 6000-6010. [22] KALYAN K S, RAJASEKHARAN A, SANGEETHA S. AMMUS: a survey of transformer-based pretrained models in natural language processing[J]. arXiv:2108.05542, 2021. [23] DOSOVITSKIY A. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [24] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [25] CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv: 2102.04306, 2021. [26] CAO H, WANG Y Y, CHEN J N, et al. Swin-Unet: unet-like pure transformer for medical image segmentation[C]//Proceedings of the European Conference on Computer Vision, 2022: 205-218. [27] ZHANG Y T, FENG J Q, GUO X, et al. Comparative analysis of U-Net and TLMDB GAN for the cardiovascular segmentation of the ventricles in the heart[J]. Computer Methods and Programs in Biomedicine, 2022, 215: 106614. [28] XIE S, HUANG H M, NIU Z W, et al. MedFCT: a frequency domain joint CNN-transformer network for semi-supervised medical image segmentation[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 1913-1918. [29] ZHANG Y, WANG Y, XU L, et al. ST-GAN: a swin transformer-based generative adversarial network for unsupervised domain adaptation of cross-modality cardiac segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(2): 893-904. [30] WANG Z Y, YANG C. MixSegNet: fusing multiple mixed-supervisory signals with multiple views of networks for mixed-supervised medical image segmentation[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108059. [31] GAO Y H. Training like a medical resident: context-prior learning toward universal medical image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 11194-11204. [32] AGHAPANAH H, RASTI R, KERMANI S, et al. CardSegNet: an adaptive hybrid CNN-vision transformer model for heart region segmentation in cardiac MRI[J]. Computerized Medical Imaging and Graphics, 2024, 115: 102382. [33] GAO Y H, ZHOU M, METAXAS D N. UTNet: a hybrid transformer architecture for medical image segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Springer International Publishing, 2021: 61-71. [34] GAO Y, ZHOU M, LIU D. A multi‐scale Transformer for medical image segmentation: architectures, model efficiency, and benchmarks[J]. arXiv:2203.00131, 2022. [35] LIN X, YU L, CHENG K T, et al. BATFormer: towards boundary-aware lightweight transformer for efficient medical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(7): 3501-3512. [36] WANG H Y, WANG Z, WANG X Q, et al. AnatSwin: an anatomical structure-aware transformer network for cardiac MRI segmentation utilizing label images[J]. Neurocomputing, 2024, 577: 127379. [37] PERERA S, NAVARD P, YILMAZ A. SegFormer3D: an efficient transformer for 3D medical image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2024: 4981-4988. [38] ZHOU H Y, GUO J S, ZHANG Y H, et al. nnFormer: volumetric medical image segmentation via a 3D transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 4036-4045. [39] WANG Z, MA C. Weak-Mamba-UNet: visual mamba makes CNN and ViT work better for scribble-based medical image segmentation[J]. arXiv:2402.10887, 2024. [40] GU A, DAO T. Mamba: linear-time sequence modeling with selective state spaces[J]. arXiv:2312.00752, 2023. [41] DENG X L, WU H S, ZENG R H, et al. MemSAM: taming segment anything model for echocardiography video segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 9622-9631. [42] TAN S, ZHANG Z, CAI Y, et al. SegStitch: multidimensional transformer for robust and efficient medical imaging segmen-tation[J]. arXiv:2408.00496, 2024. [43] BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514-2525. [44] ZHUANG X. Multivariate mixture model for myocardial segmentation combining multi-source images[J]. IEEE Transa-ctions on Pattern Analysis & Machine Intelligence, 2019, 41(12): 2933-2946. [45] CAMPELLO V M, GKONTRA P, IZQUIERDO C, et al. Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3543-3554. [46] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [47] HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR: transformers for 3D medical image segmentation[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1748-1758. [48] LI Z R, SILAMU W, WANG Y Z, et al. DenseTrans: multimodal brain tumor segmentation using swin transformer[J]. IEEE Access, 2023, 11: 42895-42908. [49] LIU Y, MA Y Z, ZHU Z Q, et al. TransSea: hybrid CN transformer with semantic awareness for 3-D brain tumor segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 16-31. [50] COX J, LIU P, STOLTE S E, et al. BrainSegFounder: towards 3D foundation models for neuroimage segmentation[J]. Medical Image Analysis, 2024, 97: 103301. [51] PEIRIS H, HAYAT M, CHEN Z L, et al. A robust volumetric transformer forAccurate 3D tumor segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 162-172. [52] WANG N, LIN S, LI X, et al. MISSU: 3D medical image segmentation via self-distilling TransUNet[J]. IEEE Transactions on Medical Imaging, 2023, 42(9): 2740-2750. [53] YANG S, LI X, MEI J, et al. 3D-TransUNet for brain metastases segmentation in the BraTS2023 challenge[J]. arXiv: 2403.15735, 2024. [54] ZHU Z Q, SUN M W, QI G Q, et al. Sparse dynamic volume transUNet with multi-level edge fusion for brain tumor segmentation[J]. Computers in Biology and Medicine, 2024, 172: 108284. [55] ASHTARI P, SIMA D M, DE LATHAUWER L, et al. Factorizer: a scalable interpretable approach to context modeling for medical image segmentation[J]. Medical Image Analysis, 2023, 84: 102706. [56] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401: 788-791. [57] LIN J, LIN J, LU C, et al. CKD-TransBTS: clinical knowledge-driven hybrid transformer with modality-correlated cross-attention for brain tumor segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(8): 2451-2461. [58] GHAZOUANI F, VERA P, RUAN S. Efficient brain tumor segmentation using swin transformer and enhanced local self-attention[J]. International Journal of Computer Assisted Radiology and Surgery, 2024, 19(2): 273-281. [59] ZHOU L, JIANG Y, LI W, et al. Shape-scale co-awareness network for 3D brain tumor segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(7): 2495-2508. [60] LI X J, MA S Q, XU J H, et al. TranSiam: aggregating multi-modal visual features with locality for medical image segmentation[J]. Expert Systems with Applications, 2024, 237: 121574. [61] XING Z H, YE T, YANG Y J, et al. SegMamba: long-range sequential modeling mamba for 3D medical image segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Springer Nature Switzerland, 2024: 578-588. [62] SIMPSON A L, ANTONELLI M, BAKAS S, et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms[J]. arXiv:1902.09063, 2019. [63] BAID U, GHODASARA S, MOHAN S, et al. The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification[J]. arXiv:2107. 02314, 2021. [64] MOAWAD A W, JANAS A, BAID U, et al. The brain tumor segmentation (BraTS-mets) challenge 2023: brain metastasis segmentation on pre-treatment MRI[J]. arXiv:2306.00838, 2023. [65] KAZEROONI A F, KHALILI N, LIU X, et al. The brain tumor segmentation (BraTS) challenge 2023: focus on pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)[J]. arXiv:2305.17033, 2023. [66] SHI Y Y, GOTTIPATI A, YAN Y H. Path-CT image registration with self-supervised vision transformer for lung cancer[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging. Piscataway: IEEE, 2024: 1-5. [67] ZHANG C Y, SUN S B, HU W M, et al. FDR-TransUNet: a novel encoder-decoder architecture with vision transformer for improved medical image segmentation[J]. Computers in Biology and Medicine, 2024, 169: 107858. [68] KAZEROUNI A, KARIMIJAFARBIGLOO S, AZAD R, et al. FuseNet: self-supervised dual-path network for medical image segmentation[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging. Piscataway: IEEE, 2024: 1-5. [69] GENG P, TAN Z Y, WANG Y M, et al. STCNet: alternating CNN and improved transformer network for COVID-19 CT image segmentation[J]. Biomedical Signal Processing and Control, 2024, 93: 106205. [70] MA M J, XIA H Y, TAN Y M, et al. HT-Net: hierarchical context-attention transformer network for medical ct image segmentation[J]. Applied Intelligence, 2022, 52(9): 10692-10705. [71] PENG Y J, ZHANG T, GUO Y F. Cov-TransNet: dual branch fusion network with transformer for COVID-19 infection segmentation[J]. Biomedical Signal Processing and Control, 2023, 80: 104366. [72] TALIB L F, AMIN J, SHARIF M, et al. Transformer-based semantic segmentation and CNN network for detection of histopathological lung cancer[J]. Biomedical Signal Processing and Control, 2024, 92: 106106. [73] YANG Y, ZHANG L, REN L, et al. MMViT-Seg: a lightweight transformer and CNN fusion network for COVID-19 segmentation[J]. Computer Methods and Programs in Biomedicine, 2023, 230: 107348. [74] LIU Y T, ZHU Y, XIN Y, et al. MESTrans: multi-scale embedding spatial transformer for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2023, 233: 107493. [75] YAN R, QU L, WEI Q, et al. Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging[J]. IEEE Transactions on Medical Imaging, 2023, 42(7): 1932-1943. [76] DING W P, WANG H P, HUANG J S, et al. FTransCNN: fusing Transformer and a CNN based on fuzzy logic for uncertain medical image segmentation[J]. Information Fusion, 2023, 99: 101880. [77] ZHU Y T, PENG M F, WANG X Y, et al. LGCE-Net: a local and global contextual encoding network for effective and efficient medical image segmentation[J]. Applied Intelligence, 2024, 55(1): 66. [78] LI Z, LI Y, LI Q, ET AL. LViT: language meets vision transformer in medical image segmentation[J]. arXiv:2206.14718, 2022. [79] ZHAN G, QIAN K, CHEN W, et al. EASwin-Unet: segmen-ting CT images of COVID-19 with edge-fusion attention[J]. Biomedical Signal Processing and Control, 2024, 89: 105759. [80] AZAD R, ASADI-AGHBOLAGHI M, FATHY M, et al. Bi-directional ConvLSTM U-Net with densley connected convol-utions[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 406-415. [81] MA J, WANG Y, AN X, et al. Toward data‐efficient learning: a benchmark for COVID‐19 CT lung and infection segme-ntation[J]. Medical Physics, 2021, 48(3): 1197-1210. [82] ZHANG K, LIU X, SHEN J, et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography[J]. Cell, 2020, 181(6): 1423-1433. [83] BORKOWSKI A A, BUI M M, THOMAS L B, et al. Lung and colon cancer histopathological image dataset (LC25000)[J]. arXiv:1912.12142, 2019. [84] FAN D P, ZHOU T, JI G P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from ct images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637. [85] JAEGER S, KARARGYRIS A, CANDEMIR S, et al. Automatic tuberculosis screening using chest radiographs[J]. IEEE Transactions on Medical Imaging, 2013, 33(2): 233-245. [86] HEIDARI M, KAZEROUNI A, SOLTANY M, et al. HiFormer: hierarchical multi-scale representations using transformers for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6191-6201. [87] YUAN F N, ZHANG Z X, FANG Z J. An effective CNN and Transformer complementary network for medical image segmentation[J]. Pattern Recognition, 2023, 136: 109228. [88] FU Y H, LIU J F, SHI J. TSCA-Net: transformer based spatial-channel attention segmentation network for medical images[J]. Computers in Biology and Medicine, 2024, 170: 107938. [89] SUN G, PAN Y, KONG W, et al. DA-TransUNet: integrating spatial and channel dual attention with transformer U-Net for medical image segmentation[J]. Front Bioeng Biotechnol, 2024, 12: 1398237. [90] LIN X, YU L, CHENG K T, et al. The lighter the better: rethi-nking transformers in medical image segmentation through adaptive pruning[J]. IEEE Transactions on Medical Imaging, 2023, 42(8): 2325-2337. [91] HE A, WANG K, LI T, et al. H2Former: an efficient hierarchical hybrid transformer for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(9): 2763-2775. [92] WANG Y Q, LI Z H, MEI J R, et al. SwinMM: masked multi-view with swin transformers for 3D medical image segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 486-496. [93] LI J, CHEN N, ZHOU H, et al. MCRformer: morphological constraint reticular transformer for 3D medical image segmentation[J]. Expert Systems with Applications, 2023, 232: 120877. [94] LAN L B, CAI P Z, JIANG L, et al. BRAU-Net++: U-shaped hybrid CNN-transformer network for medical image segmentation[J]. arXiv:2401.00722, 2024. [95] POLLASTRI F, CIPRIANO M, BOLELLI F, et al. Long-range 3D self-attention for MRI prostate segmentation[C]//Proceedings of the IEEE 19th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2022: 1-5. [96] TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6450-6459. [97] NATARAJAN S, PRIESTER A, MARGOLIS D, et al. Prostate MRI and ultrasound with pathology and coordinates of tracked biopsy (prostate-MRI-US-biopsy)[J]. The Cancer Ima-ging Archive, 2020, 10: 7937. [98] RAHMAN M M, MARCULESCU R. Medical image segmentation via cascaded attention decoding[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6211-6220. [99] WU J D, JI W, FU H Z, et al. MedSegDiff-V2: diffusion-based medical image segmentation with transformer[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 6030-6038. [100] FU L Y, CHEN Y Z, JI W, et al. SSTrans-Net: smart Swin Transformer network for medical image segmentation[J]. Biomedical Signal Processing and Control, 2024, 91: 106071. [101] P?OTKA S, CHRABASZCZ M, BIECEK P. Swin SMT: global sequential modeling for enhancing 3D medical image segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Springer Nature Switzerland, 2024: 689-698. [102] LUO X D, LIAO W J, XIAO J H, et al. WORD: a large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image[J]. Medical Image Analysis, 2022, 82: 102642. [103] JI Y, BAI H, GE C, et al. AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation[C]//Advances in Neural Information Processing Systems, 2022: 36722-36732. [104] GIBSON E, GIGANTI F, HU Y, et al. Automatic multi-organ segmentation on abdominal CT with dense V-networks[J]. IEEE Transactions on Medical Imaging, 2018, 37(8): 1822-1834. [105] WASSERTHAL J, BREIT H C, MEYER M T, et al. TotalSegmentator: robust segmentation of 104 anatomic structures in CT images[J]. Radiol Artif Intell, 2023, 5(5): 230024. [106] LI X, LYU S, LI M, et al. SDMT: spatial dependence multi-task transformer network for 3D knee MRI segmentation and landmark localization[J]. IEEE Transactions on Medical Imaging, 2023, 42(8): 2274-2285. [107] ZHANG Y D, SHI Z L, WANG H, et al. Automatic segmentation of lumbar vertebra anatomical region based on hybrid Swin-Transformer network[C]//Proceedings of the IEEE 20th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2023: 1-5. [108] SUN K, WANG Q, SHEN D. Joint cross-attention network with deep modality prior for fast MRI reconstruction[J]. IEEE Transactions on Medical Imaging, 2024, 43(1): 558-569. [109] XIE H, HUANG Z X, LEUNG F H F, et al. SATR: a structure-affinity attention-based transformer encoder for spine segmentation[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging. Piscataway: IEEE, 2024: 1-5. [110] CHEN J, QIAN L, MA L, et al. SymTC: a symbiotic Transformer-CNN net for instance segmentation of lumbar spine MRI[J]. Comput Biol Med, 2024, 179: 108795. [111] WU M, QIAN Y, LIAO X, et al. Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention[J]. BMC Med Imaging, 2023, 23(1): 91. [112] LIN J, HUANG X R, ZHOU H Y, et al. Stimulus-guided adaptive transformer network for retinal blood vessel segmentation in fundus images[J]. Medical Image Analysis, 2023, 89: 102929. [113] HE S T, JI Y Z, ZHANG Y Q, et al. CFNet: a coarse-to-fine framework forCoronary artery segmentation[C]//Proceedings of the Pattern Recognition and Computer Vision. Singapore: Springer Nature Singapore, 2024: 431-442. [114] MOU L, LIN J, ZHAO Y, et al. COSTA: a multi-center TOF-MRA dataset and a style self-consistency network for cerebrovascular segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(12): 4442-4456. [115] JIANG M S, ZHU Y F, ZHANG X D. CoVi-Net: a hybrid convolutional and vision transformer neural network for retinal vessel segmentation[J]. Computers in Biology and Medicine, 2024, 170: 108047. [116] CHEN F, CHEN L Y, KONG W T, et al. Deep semi-supervised ultrasound image segmentation by using a shadow aware network with boundary refinement[J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3779-3793. [117] CHEN F, HAN H, WAN P, et al. Joint segmentation and differential diagnosis of thyroid nodule in contrast-enhanced ultrasound images[J]. IEEE Trans Biomed Eng, 2023, 70(9): 2722-2732. [118] DU S Y, BAYASI N, HAMARNEH G, et al. MDViT: multi-domain vision transformer for small medical image segmentation datasets[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Sprin-ger Nature Switzerland, 2023: 448-458. [119] LING Y T, WANG Y L, DAI W L, et al. MTANet: multi-task attention network for automatic medical image segmentation and classification[J]. IEEE Transactions on Medical Imaging, 2024, 43(2): 674-685. [120] ZHOU L, ZHANG Y, ZHANG J, et al. Prototype learning guided hybrid network for breast tumor segmentation in DCE-MRI[J]. IEEE Transactions on Medical Imaging, 2025, 44(1): 244-258. [121] HEIMANN T, MORRISON B, STYNER M, et al. Segmentation of knee images: a grand challenge[C]//Proceedings of the Conference on Medical Image Analysis for the Clinic, 2011. [122] JIN K, HUANG X R, ZHOU J X, et al. FIVES: a fundus image dataset for artificial intelligence based vessel segmentation[J]. Scientific Data, 2022, 9: 475. [123] STAAL J, ABRàMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. [124] GIREESHAH M, NANDA S. Thyroid nodule segmentation and classification in ultrasound images[J]. Medical Image Analysis, 2022, 79: 102443. [125] CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[J]. arXiv:1902.03368, 2019. |
| [1] | LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu. Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks [J]. Computer Engineering and Applications, 2025, 61(9): 25-40. |
| [2] | CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng. Research Progress on Physical Adversarial Attacks for Target Detection [J]. Computer Engineering and Applications, 2025, 61(9): 80-101. |
| [3] | XIANG Yiwei, JIANG Yu, WANG Qikai, LUO Rongrong. Research on Real-Time Transformer for Multi-Scale Feature Optimization in Drone Aerial Imaging [J]. Computer Engineering and Applications, 2025, 61(9): 221-229. |
| [4] | LUO Yuxuan, WU Gaochang, GAO Ming. Remote Sensing Image Super-Resolution Network with Adaptive Convolution and Lightweight Transformer [J]. Computer Engineering and Applications, 2025, 61(9): 263-276. |
| [5] | WANG Jing, LI Yunxia. Research on Stock Return Forecast by NS-FEDformer Model [J]. Computer Engineering and Applications, 2025, 61(9): 334-342. |
| [6] | PENG Xiaohong, DENG Feng, YU Yinghuai. Construction of Chinese Named Entity Recognition Dataset in Penaeus Vannamei Farming Field [J]. Computer Engineering and Applications, 2025, 61(9): 353-362. |
| [7] | ZHOU Jiani, LIU Chunyu, LIU Jiapeng. Stock Price Trend Prediction Model Integrating Channel and Multi-Head Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(8): 324-338. |
| [8] | ZHEN Tong, ZHANG Weizhen, LI Zhihui. Review of Classification Methods for Crop Structure in Remote Sensing Imagery [J]. Computer Engineering and Applications, 2025, 61(8): 35-48. |
| [9] | LI Tongwei, QIU Dawei, LIU Jing, LU Yinghang. Review of Human Behavior Recognition Based on RGB and Skeletal Data [J]. Computer Engineering and Applications, 2025, 61(8): 62-82. |
| [10] | WEN Hao, YANG Yang. Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(8): 108-116. |
| [11] | WANG Yan, LU Pengyi, TA Xue. Normalized Convolutional Image Dehazing Network Combined with Feature Fusion Attention [J]. Computer Engineering and Applications, 2025, 61(8): 226-238. |
| [12] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [13] | CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges [J]. Computer Engineering and Applications, 2025, 61(7): 42-60. |
| [14] | ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng. Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities [J]. Computer Engineering and Applications, 2025, 61(7): 61-80. |
| [15] | DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision. DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision [J]. Computer Engineering and Applications, 2025, 61(7): 128-140. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||