
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (20): 36-53.DOI: 10.3778/j.issn.1002-8331.2412-0070
• Research Hotspots and Reviews • Previous Articles Next Articles
JU Zedong, CHENG Chunlei, YE Qing, PENG Lin, GONG Zhufan
Online:2025-10-15
Published:2025-10-15
句泽东,程春雷,叶青,彭琳,龚著凡
JU Zedong, CHENG Chunlei, YE Qing, PENG Lin, GONG Zhufan. Review of Research Progress in Chinese Grammar Error Correction Technology[J]. Computer Engineering and Applications, 2025, 61(20): 36-53.
句泽东, 程春雷, 叶青, 彭琳, 龚著凡. 中文语法纠错技术的研究进展综述[J]. 计算机工程与应用, 2025, 61(20): 36-53.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2412-0070
| [1] 李云汉, 施运梅, 李宁, 等. 中文文本自动校对综述[J]. 中文信息学报, 2022, 36(9): 1-18. LI Y H, SHI Y M, LI N, et al. A survey of automatic error correction of Chinese text[J]. Journal of Chinese Information Processing, 2022, 36(9): 1-18. [2] SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. [3] LEE C, HWANG Y G, OH H J, et al. Fine-grained named entity recognition using conditional random fields for question answering[C]//Proceedings of the 3rd Asia Information Retri-eval Technology SymposOum. Berlin: Heidelberg, 2006: 581-587. [4] BORONG H, XUDONG L. Modern Chinese: updated five editions[M]. Beijing: Higher Education Press, 2011. [5] YU L C, LEE L H, CHANG L P. Overview of grammatical error diagnosis for learning Chinese as a foreign language[C]//Proceedings of the 22nd International Conference on Computers in Education, 2014: 42-47. [6] LEE L H, YU L C, CHANG L P. Overview of the NLP-TEA 2015 shared task for Chinese grammatical error diagnosis[C]//Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2015: 1-6. [7] LEE L H, YU L C, CHANG L P. Overview of the NLP-TEA 2016 shared task for Chinese grammatical error diagnosis[C]//Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2015: 1-6. [8] RAO G, ZHANG B, XUN E, et al. IJCNLP-2017 task 1: Chinese grammatical error diagnosis[C]//Proceedings of the International Joint Conference on Natural Language Processing, 2017: 1-8. [9] RAO G Q, GONG Q, ZHANG B L, et al. Overview of NLPTEA-2018 share task Chinese grammatical error diagnosis[C]//Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2018: 42-51. [10] RAO G Q, YANG E H, ZHANG B L. Overview of NLPTEA-2020 shared task for Chinese grammatical error diagnosis[C]//Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2020: 25-35. [11] ZHAO Y Y, JIANG N, SUN W W, et al. Overview of the NLPCC 2018 shared task: grammatical error correction[C]//Proceedings of the Natural Language Processing and Chinese Computing. Cham: Springer International Publishing, 2018: 439-445. [12] ZHANG Y, LI Z, BAO Z, et al. MuCGEC: a multi-reference multi-source evaluation dataset for Chinese grammatical error correction[J]. arXiv:2204.10994, 2022. [13] XIN Y, ZHAO H, WANG Y Z, et al. An improved graph model for Chinese spell checking[C]//Proceedings of the 3rd CIPS-SIGHAN Joint Conference on Chinese Language Processing. Stroudsburg: ACL, 2014: 157-166. [14] 刘亮亮, 曹存根. 中文“非多字词错误”自动校对方法研究[J]. 计算机科学, 2016, 43(10): 200-205. LIU L L, CAO C G. Study of automatic proofreading method for non-multi-character word error in Chinese text[J]. Computer Science, 2016, 43(10): 200-205. [15] LEE L H, CHANG L P, LEE K C, et al. Linguistic rules based Chinese error detection for second language learning[C]//Proceedings of the 21st International Conference on Computers in Education, 2013: 27-29. [16] LEE L H, YU L C, LEE K C, et al. A sentence judgment system for grammatical error detection[C]//Proceedings of the 25th International Conference on Computational Linguistics: System Demonstrations, 2014: 67-70. [17] CHANG T H, SUNG Y T, HONG J F, et al. KNGED: a tool for grammatical error diagnosis of Chinese sentences[C]//Proceedings of the 22nd International Conference on Computers in Education, 2014. [18] WU C H, LIU C H, HARRIS M, et al. Sentence correction incorporating relative position and parse template language models[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(6): 1170-1181. [19] FU K, HUANG J, DUAN Y T. Youdao’s winning solution to the NLPCC-2018 task 2 challenge: a neural machine translation approach to Chinese grammatical error correction[C]//Proceedings of the Natural Language Processing and Chinese Computing. Cham: Springer International Publishing, 2018: 341-350. [20] CHEN P H, LIN C J, SCH?LKOPF B. A tutorial on ν-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 111-136. [21] LIU X, CHENG K, LUO Y, et al. A hybrid Chinese spelling correction using language model and statistical machine translation with reranking[C]//Proceedings of the 7th SIGHAN Workshop on Chinese Language Processing, 2013: 54-58. [22] CHENG S M, YU C H, CHEN H H. Chinese word ordering errors detection and correction for non-native Chinese language learners[C]//Proceedings of the 25th International Conference on Computational Linguistics, 2014: 279-289. [23] YU C H, CHEN H H. Detecting word ordering errors in Chinese sentences for learning Chinese as a foreign language[C]//Proceedings of the International Conference on Computational Linguistics, 2016: 3003-3018. [24] CHANG R Y, WU C H, PRASETYO P K. Error diagnosis of Chinese sentences using inductive learning algorithm and decomposition-based testing mechanism[J]. ACM Transa-ctions on Asian Language Information Processing, 2012, 11(1): 1-24. [25] XIONG J H, ZHANG Q, HOU J P, et al. Extended HMM and ranking models for Chinese spelling correction[C]//Proceedings of the 3rd CIPS-SIGHAN Joint Conference on Chinese Language Processing. Stroudsburg: ACL, 2014: 133-138. [26] REN H K, YANG L E, XUN E D. A sequence to sequence learning for Chinese grammatical error correction[C]//Proceedings of the Natural Language Processing and Chinese Computing. Cham: Springer International Publishing, 2018: 401-410. [27] ZHOU J P, LI C, LIU H Y, et al. Chinese grammatical error correction using statistical and neural models[C]//Proceedings of the Natural Language Processing and Chinese Computing. Cham: Springer International Publishing, 2018: 117-128. [28] QIU Z Q, QU Y L. A two-stage model for Chinese grammatical error correction[J]. IEEE Access, 2019, 7: 146772-146777. [29] WANG D M, TAY Y, ZHONG L. Confusionset-guided pointer networks for Chinese spelling check[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 5780-5785. [30] ZHAO Z W, WANG H F. MaskGEC: improving neural grammatical error correction via dynamic masking[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 1226-1233. [31] CHENG X Y, XU W D, CHEN K L, et al. SpellGCN: incorporating phonological and visual similarities into language models for Chinese spelling check[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 871-881. [32] 王辰成, 杨麟儿, 王莹莹, 等. 基于Transformer增强架构的中文语法纠错方法[J]. 中文信息学报, 2020, 34(6): 106-114. WANG C C, YANG L E, WANG Y Y, et al. Chinese grammatical error correction method based on Transformer enha-nced architecture[J]. Journal of Chinese Information Processing, 2020, 34(6): 106-114. [33] XIE H, CHEN Z, CHENG J, et al. Chinese grammar error detection based on data enhancement and multi-task feature learning[C]//Proceedings of the 19th Chinese National Conference on Computational Linguistics, 2020: 761-770. [34] TANG Z, JI Y, ZHAO Y, et al. Chinese grammatical error correction enhanced by data augmentation from word and character levels[C]//Proceedings of the 20th Chinese National Conference on Computational Linguistics, 2021: 813-824. [35] 李嘉诚, 沈嘉钰, 龚晨, 等. 基于指针网络融入混淆集知识的中文语法纠错[J]. 中文信息学报, 2022, 36(4): 29-38. LI J C, SHEN J Y, GONG C, et al. Incorporating confusion set knowledge with pointer network for Chinese grammatical error correction[J]. Journal of Chinese Information Proces-sing, 2022, 36(4): 29-38. [36] 孙邱杰, 梁景贵, 李思. 基于BART噪声器的中文语法纠错模型[J]. 计算机应用, 2022, 42(3): 860-866. SUN Q J, LIANG J G, LI S. Chinese grammatical error correction model based on bidirectional and auto-regressive transformers noiser[J]. Journal of Computer Applications, 2022, 42(3): 860-866. [37] 邓倩. 基于知识图谱的中文语法纠错研究[D]. 武汉: 华中师范大学, 2023. DENG Q. Chinese grammatical error correction based on knowledge graph[D]. Wuhan: Central China Normal University, 2023. [38] SU C, ZHAO X, QIAO X, et al. HWCGEC: HW-TSC’s 2023 submission for the NLPCC2023’s Chinese grammatical error correction task[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Cham: Springer Nature Switzerland, 2023: 59-68. [39] ZHAO W, WANG L, SHEN K, et al. Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data[J]. arXiv:1903.00138, 2019. [40] WANG S L, WANG B X, GONG J F, et al. Combining ResNet and transformer for Chinese grammatical error diagnosis[C]//Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2020: 36-43. [41] LUO Y K, BAO Z Y, LI C, et al. Chinese grammatical error diagnosis with graph convolution network and multi-task learning[C]//Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2020: 44-48. [42] ZHANG Y, GOYAL R. SynGEC: syntax-enhanced grammatical error correction with a tailored GEC-oriented parser[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022. [43] ZHENG B, CHE W, GUO J, et al. Chinese grammatical error diagnosis with long short-term memory networks[C]//Proceedings of the 3rd Workshop on Natural Language Proces-sing Techniques for Educational Applications, 2016: 49-56. [44] LIAO Q, WANG J, YANG J, et al. YNU-HPCC at IJCNLP-2017 task 1: Chinese grammatical error diagnosis using a bi-directional LSTM-CRF model[C]//Proceedings of the International Joint Conference on Natural Language Processing, 2017: 73-77. [45] YANG Y, XIE P, TAO J, et al. Alibaba at IJCNLP-2017 task 1: embedding grammatical features into LSTMs for Chinese grammatical error diagnosis task[C]//Proceedings of the International Joint Conference on Natural Language Processing, 2017: 41-46. [46] LIU Y J, ZAN H Y, ZHONG M J, et al. Detecting simultaneously Chinese grammar errors based on a BiLSTM-CRF model[C]//Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2018: 188-193. |
| [1] | WANG Jing, LI Yunxia. Research on Stock Return Forecast by NS-FEDformer Model [J]. Computer Engineering and Applications, 2025, 61(9): 334-342. |
| [2] | LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu. Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks [J]. Computer Engineering and Applications, 2025, 61(9): 25-40. |
| [3] | CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng. Research Progress on Physical Adversarial Attacks for Target Detection [J]. Computer Engineering and Applications, 2025, 61(9): 80-101. |
| [4] | ZHOU Jiani, LIU Chunyu, LIU Jiapeng. Stock Price Trend Prediction Model Integrating Channel and Multi-Head Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(8): 324-338. |
| [5] | ZHEN Tong, ZHANG Weizhen, LI Zhihui. Review of Classification Methods for Crop Structure in Remote Sensing Imagery [J]. Computer Engineering and Applications, 2025, 61(8): 35-48. |
| [6] | LI Tongwei, QIU Dawei, LIU Jing, LU Yinghang. Review of Human Behavior Recognition Based on RGB and Skeletal Data [J]. Computer Engineering and Applications, 2025, 61(8): 62-82. |
| [7] | WEN Hao, YANG Yang. Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(8): 108-116. |
| [8] | WANG Yan, LU Pengyi, TA Xue. Normalized Convolutional Image Dehazing Network Combined with Feature Fusion Attention [J]. Computer Engineering and Applications, 2025, 61(8): 226-238. |
| [9] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [10] | CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges [J]. Computer Engineering and Applications, 2025, 61(7): 42-60. |
| [11] | ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng. Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities [J]. Computer Engineering and Applications, 2025, 61(7): 61-80. |
| [12] | DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision. DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision [J]. Computer Engineering and Applications, 2025, 61(7): 128-140. |
| [13] | SHI Xin, WANG Haoze, JI Yi, MA Junyan. Multimodal Vehicle Trajectory Prediction Method with Fusion of Spatio-Temporal Features [J]. Computer Engineering and Applications, 2025, 61(7): 325-333. |
| [14] | WANG Wenju, TANG Bang, GU Zehua, WANG Sen. Overview of Multi-View 3D Reconstruction Techniques in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(6): 22-35. |
| [15] | SUN Yu, LIU Chuan, ZHOU Yang. Applications of Deep Learning in Knowledge Graph Construction and Reasoning [J]. Computer Engineering and Applications, 2025, 61(6): 36-52. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||