Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (24): 281-292.DOI: 10.3778/j.issn.1002-8331.2410-0121

• Network, Communication and Security • Previous Articles     Next Articles

Towards Answering Star-Join Queries Under Central Differential Privacy

ZHANG Xiaojian1,2, CHEN Xu1,2, WANG Haofeng1,2+   

  1. 1.School of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou 450046, China
    2.Engineering Technology Research Center of Henan Province IoT Big Data Processing and Security, Zhengzhou 450121, China
  • Online:2025-12-15 Published:2025-12-15

基于中心化差分隐私的星形连接查询方法

张啸剑1,2,陈旭1,2,王浩锋1,2+   

  1. 1.河南财经政法大学 计算机与信息工程学院,郑州 450046
    2.河南省物联大数据处理与安全工程技术研究中心,郑州 450121

Abstract: Star-Join queries have attracted extensive attention from researchers in addressing multi-relational table join problems with foreign key constraints. Existing multi-relational table query algorithms with foreign key constraints have two limitations: firstly, they can only handle Star-Join query data for low-dimensional relational table join problems; secondly, due to the processing of the SQL statements of queries, the proposed algorithms need to consider the functional dependencies between the table attributes involved in the query statements. To address the shortcomings of existing algorithms, an effective Star-Join query algorithm satisfying differential privacy, namely SJFD (star join function dependence), is proposed. The algorithm fully leverages the characteristics of the star schema and designs an input-side perturbation mechanism. It takes the predicate value domain of the Star-Join query as the perturbation value domain and filters each dimension table through the perturbed predicates. The goal of reducing the sensitivity of Star-Join queries when processing high-dimensional relational table join problems is achieved through two aspects: the functional dependencies within dimension tables and the value domain coverage relationships between tables. The SJFD algorithm is compared with four existing algorithms on the SSB (star schema benchmark) dataset, and the experimental results show that its query response performance is superior to that of similar algorithms.

Key words: Star-Join query,  , differential privacy, functional dependency, fact table, dimensional table

摘要: Star-Join查询在具有外键约束的多关系表连接问题上已经引起了研究者的广泛关注。现有的带外键约束的多关系表查询算法存在两个缺陷:首先现有算法仅能处理低维关系表连接问题上的Star-Join查询数据,其次由于对查询的SQL语句进行处理,因此所提算法需要考虑到查询语句所涉及到的表属性之间存在函数依赖关系。针对现有算法的不足,提出一种有效且满足差分隐私的Star-Join查询算法SJFD(star join function dependence)。该算法充分利用星形模型的特点,设计了一种从输入端进行扰动的机制SJFD。该算法以星形连接查询的谓词值域作为扰动值域,通过扰动后的谓词来过滤每个维表。通过维表内部之间的函数依赖关系和表与表之间的值域覆盖关系两个方面来达到降低在处理高维关系表连接问题上的Star-Join查询的敏感度目的。SJFD算法与现有的四个算法在SSB(star schema benchmark)数据集上分别进行比较,实验结果表明其响应查询算法优于同类算法。

关键词: 星形连接查询, 差分隐私, 函数依赖, 事实表, 维度表