[1] DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends? in Theoretical Computer Science, 2014, 9(3/4): 211-407.
[2] LIEW S P, TAKAHASHI T, TAKAGI S, et al. Network shuffling: privacy amplification via random walks[C]//Proceedings of the 2022 International Conference on Management of Data. New York: ACM, 2022: 773-787.
[3] QARDAJI W, YANG W N, LI N H. Understanding hierarchical methods for differentially private histograms[J]. Proceedings of the VLDB Endowment, 2013, 6(14): 1954-1965.
[4] TAKAGI S, TAKAHASHI T, CAO Y, et al. P3GM: private high-dimensional data release via privacy preserving phased generative model[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 169-180.
[5] WANG T H, LOPUHA?-ZWAKENBERG M, LI Z T, et al. Locally differentially private frequency estimation with consistency[J]. arXiv:1905.08320, 2019.
[6] XU J, ZHANG Z J, XIAO X K, et al. Differentially private histogram publication[J]. The VLDB Journal, 2013, 22(6): 797-822.
[7] ZHENG S Y, CAO Y, YOSHIKAWA M. Secure shapley value for cross-silo federated learning (technical report)[J]. arXiv:2209.04856, 2022.
[8] KOTSOGIANNIS I, TAO Y C, HE X, et al. PrivateSQL: a differentially private SQL query engine[J]. Proceedings of the VLDB Endowment, 2019, 12(11): 1371-1384.
[9] TAO Y C, HE X, MACHANAVAJJHALA A, et al. Computing local sensitivities of counting queries with joins[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020: 479-494.
[10] DONG W, FANG J R, YI K, et al. R2T: instance-optimal truncation for differentially private query evaluation with foreign keys[C]//Proceedings of the 2022 International Conference on Management of Data. New York: ACM, 2022: 759-772.
[11] FU C C, LI H, LOU J, et al. DP-starJ: a differential private scheme towards analytical star-join queries[J]. Proceedings of the ACM on Management of Data, 2023, 1(4): 1-24.
[12] NISSIM K, RASKHODNIKOVA S, SMITH A. Smooth sensitivity and sampling in private data analysis[C]//Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. New York: ACM, 2007: 75-84.
[13] DONG W, YI K. Residual sensitivity for differentially private multi-way joins[C]//Proceedings of the 2021 International Conference on Management of Data. New York: ACM, 2021: 432-444.
[14] CAI K T, XIAO X K, CORMODE G. PrivLava: synthesizing relational data with foreign keys under differential privacy[J]. Proceedings of the ACM on Management of Data, 2023, 1(2): 1-25.
[15] NARAYAN A, HAEBERLEN A. DJoin: differentially private join queries over distributed databases[C]//Proceedings of the USENIX Symposium on Operating Systems Design and Implementation, 2012.
[16] PEI J, AMER-YAHIA S, JOHNSON N, et al. Towards practical differential privacy for SQL queries[J]. Proceedings of the VLDB Endowment, 2018, 11(5): 526-539.
[17] DONG W, YI K. Residual sensitivity for differentially private multi-way joins[C]//Proceedings of the 2021 International Conference on Management of Data. New York: ACM, 2021: 432-444.
[18] BARAK B, CHAUDHURI K, DWORK C, et al. Privacy, accuracy, and consistency too: a holistic solution to contingency table release[C]//Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2007: 273-282.
[19] BLASIOK J, BUN M, NIKOLOV A, et al. Towards instance-optimal private query release[C]//Proceedings of the Thirt-ieth Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2019: 2480-2497.
[20] DAY W Y, LI N H, LYU M. Publishing graph degree distribution with node differential privacy[C]//Proceedings of the 2016 International Conference on Management of Data. New York: ACM, 2016: 123-138.
[21] HARDT M, LIGETT K, MCSHERRY F. A simple and practical algorithm for differentially private data release[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: ACM, 2012: 2339-2347.
[22] LI C, MIKLAU G, HAY M, et al. The matrix mechanism: optimizing linear counting queries under differential privacy[J]. The VLDB Journal, 2015, 24(6): 757-781.
[23] NIKOLOV A, TALWAR K, ZHANG L. The geometry of differential privacy: the sparse and approximate cases[C]//Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing. New York: ACM, 2013: 351-360.
[24] QARDAJI W, YANG W N, LI N H. PriView: practical differentially private release of marginal contingency tables[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 1435-1446.
[25] XIAO X K, WANG G Z, GEHRKE J. Differential privacy via wavelet transforms[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(8): 1200-1214.
[26] ZHANG X J, CHEN R, XU J L, et al. Towards accurate histogram publication under differential privacy[C]//Proceedings of the 2014 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2014: 587-595.
[27] YAO A C. Protocols for secure computations[C]//Proceedings of the 23rd Annual Symposium on Foundations of Computer Science. Piscataway: IEEE, 2008: 160-164.
[28] O’NEIL P E, O’NEIL E J, CHEN X. The star schema benchmark (SSB)[J]. Pat, 2007, 200: 50. |