
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (9): 61-79.DOI: 10.3778/j.issn.1002-8331.2409-0040
• Research Hotspots and Reviews • Previous Articles Next Articles
LUO Min, CAO Lu, LI Jiancheng, HE Xiquan, LIU Guangwu, WEN Jinyu, HUANG Xiuqing
Online:2025-05-01
Published:2025-04-30
罗敏,曹路,利建铖,何锡权,刘广武,温晋瑜,黄秀清
LUO Min, CAO Lu, LI Jiancheng, HE Xiquan, LIU Guangwu, WEN Jinyu, HUANG Xiuqing. Review of Research on Optic Disc and Optic Cup Segmentation in Deep Learning for Glaucoma Detection[J]. Computer Engineering and Applications, 2025, 61(9): 61-79.
罗敏, 曹路, 利建铖, 何锡权, 刘广武, 温晋瑜, 黄秀清. 青光眼检测视盘与视杯分割在深度学习中的研究综述[J]. 计算机工程与应用, 2025, 61(9): 61-79.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2409-0040
| [1] MENG Y, CHEN X, ZHANG H, et al. Shape-aware weakly/semi-supervised optic disc and cup segmentation with regional/marginal consistency[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, September 18-22, 2022. Cham: Springer Nature Switzerland, 2022: 524-534. [2] GUO X, LI J, LIN Q, et al. Joint optic disc and cup segmentation using feature fusion and attention[J]. Computers in Biology and Medicine, 2022, 150: 106094. [3] DOS SANTOS FERREIRA M V, DE CARVALHO FILHO A O, DE SOUSA A D, et al. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma[J]. Expert Systems with Applications, 2018, 110: 250-263. [4] THAM Y C, LI X, WONG T Y, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. [5] MOHAMED N A, ZULKIFLEY M A, ZAKI W M D W, et al. An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach[J]. Biomedical Signal Processing and Control, 2019, 53: 101454. [6] THAKUR N, JUNEJA M. Clustering based approach for segmentation of optic cup and optic disc for detection of glaucoma[J]. Current Medical Imaging, 2017, 13(1): 99-105. [7] REHMAN Z U, NAQVI S S, KHAN T M, et al. Multi-parametric optic disc segmentation using superpixel based feature classification[J]. Expert Systems with Applications, 2019, 120: 461-473. [8] MURSCH-EDLMAYR A S, NG W S, DINIZ-FILHO A, et al. Artificial intelligence algorithms to diagnose glaucoma and detect glaucoma progression: translation to clinical practice[J]. Translational Vision Science & Technology, 2020, 9(2): 55. [9] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. [10] FUMERO F, ALAYóN S, SANCHEZ J L, et al. RIM-ONE: an open retinal image database for optic nerve evaluation[C]//Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems(CBMS), 2011: 1-6. [11] ORLANDO J I, FU H, BREDA J B, et al. Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs[J]. Medical Image Analysis, 2020, 59: 101570. [12] SIVASWAMY J, KRISHNADAS S R, JOSHI G D, et al. Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation[C]//Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014: 53-56. [13] PORWAL P, PACHADE S, KAMBLE R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research[J]. Data, 2018, 3(3): 25. [14] ZHANG Z, YIN F S, LIU J, et al. ORIGA: an online retinal fundus image database for glaucoma analysis and research[C]//Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: 3065-3068. [15] BUDAI A, BOCK R, MAIER A, et al. Robust vessel segmentation in fundus images[J]. International Journal of Biomedical Imaging, 2013(6): 154860-154870. [16] STAAL J, ABRáMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. [17] BATISTA F J F, DIAZ-ALEMAN T, SIGUT J, et al. RIM-ONE DL: a unified retinal image database for assessing glaucoma using deep learning[J]. Image Analysis and Stereology, 2020, 39(3): 161-167. [18] ALMAZROA A, ALODHAYB S, OSMAN E, et al. Retinal fundus images for glaucoma analysis: the RIGA dataset[C]//Proceedings of the SPIE Medical Imaging Conference on Imaging Informatics for Healthcare, Research, and Applications, 2018: 55-62. [19] DIAZ-PINTO A, MORALES S, NARANJO V, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation[J]. Biomedical Engineering Online, 2019, 18: 1-19. [20] LI L, XU M, WANG X, et al. Attention based glaucoma detection: a large-scale database and CNN model[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10571-10580. [21] CARMONA E J, RINCóN M, GARCíA-FEIJOó J, et al. Identification of the optic nerve head with genetic algorithms[J]. Artificial Intelligence in Medicine, 2008, 43(3): 243-259. [22] HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical imaging, 2000, 19(3): 203-210. [23] HOLM S, RUSSELL G, NOURRIT V, et al. DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients[J]. Journal of Medical Imaging, 2017, 4(1): 014503. [24] WU J, FANG H, LI F, et al. Gamma challenge: glaucoma grading from multi-modality images[J]. Medical Image Analysis, 2023, 90: 102938. [25] 王彩云,玄祖兴,周建平,等. 对抗学习下的眼底图像视盘视杯分割算法[J]. 计算机应用与软件, 2024,41(2): 229-237. WANG C Y, XUAN Z X, ZHOU J P, et al. Optic disc and cup segmentation algorithm for fundus images under adversarial learning[J]. Computer Applications and Software, 2024, 41(2): 229-237. [26] ISLAM M T, MASHFU S T, FAISAL A, et al. Deep learning-based glaucoma detection with cropped optic cup and disc and blood vessel segmentation[J]. IEEE Access, 2021, 10: 2828-2841. [27] 王燕,南佩奇. MFFNet:多级特征融合图像语义分割网络[J]. 计算机科学与探索, 2024, 18(3): 707-717. WANG Y, NAN P Q. MFFNet: image semantic segmentation network of multi-level feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 707-717. [28] KIM J, TRAN L, PETO T, et al. Identifying those at risk of glaucoma: a deep learning approach for optic disc and cup segmentation and their boundary analysis[J]. Diagnostics, 2022, 12(5): 1063. [29] XIAO Y, ZHAO J, YU Y, et al. SimpleCNN-UNet: an optic disc image segmentation network based on efficient small-kernel convolutions[J]. Expert Systems with Applications, 2024, 256: 124935. [30] BALI A, MANSOTRA V. Glaucoma diagnosis using hybrid neural encoder decoder based unet hybrid inception[J]. Mansoura Engineering Journal, 2024, 49(4): 1-11. [31] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9. [32] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [33] 梅华威,尚虹霖,苏攀,等. 融合残差上下文编码和路径增强的视杯视盘分割[J]. 中国图象图形学报,2024,29(3):637-654. MEI H W, SHANG H L, SU P, et al. Optic disc and cup segmentation with combined residual context encoding and path augmentation[J]. Journal of Image and Graphics, 2024, 29(3):637-654. [34] WANG J, LI X, CHENG Y. Towards an extended efficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image[J]. Biomedical Signal Processing and Control, 2023, 85: 104906. [35] NAWAZ M, NAZIR T, JAVED A, et al. An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization[J]. Sensors, 2022, 22(2): 434. [36] VASWANI A. Attention is all you need[J]. Neural Information Processing Systems, 2017, 30: 1-11. [37] BAZI Y, AL RAHHAL M M, ELGIBREEN H, et al. Vision transformers for segmentation of disc and cup in retinal fundus images[J]. Biomedical Signal Processing and Control, 2024, 91: 105915. [38] WANG J, MAO Y A, MA X, et al. ODFormer: semantic fundus image segmentation using transformer for optic nerve head detection[J]. Information Fusion, 2024,112: 102533. [39] HUA K, FANG X, TANG Z, et al. DCAM-NET: a novel domain generalization optic cup and optic disc segmentation pipeline with multi-region and multi-scale convolution attention mechanism[J]. Computers in Biology and Medicine, 2023, 163: 107076. [40] ZHOU W, JI J, CUI W, et al. Unsupervised domain adaptation fundus image segmentation via multi-scale adaptive adversarial learning[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(10): 5792-5803. [41] ZHOU Z, ZHENG Y, ZHOU X, et al. Self-supervised pre-training for joint optic disc and cup segmentation via attention-aware network[J]. BMC Ophthalmology, 2024, 24(1): 98. [42] DOSOVITSKY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [43] TANG S, SONG C, WANG D, et al. W-Net: a boundary-aware cascade network for robust and accurate optic disc segmentation[J]. iScience, 2024, 27(1):108247. [44] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Munich, Germany, October 5-9, 2015. Cham: Springer International Publishing , 2015: 234-241. [45] SUN G, ZHANG Z, ZHANG J, et al. Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening[J]. Neural Computing and Applications, 2023, 35(22):16129-16142. [46] BHATTACHARYA R, HUSSAIN R, CHATTERJEE A, et al. PY-Net: rethinking segmentation frameworks with dense pyramidal operations for optic disc and cup segmentation from retinal fundus images[J]. Biomedical Signal Processing and Control, 2023, 85: 104895. [47] YI Y, JIANG Y, ZHOU B, et al. C2FTFNet: coarse-to-fine transformer network for joint optic disc and cup segmentation[J]. Computers in Biology and Medicine, 2023, 164: 107215. [48] SHYAMALEE T, MEEDENIYA D. Glaucoma detection with retinal fundus images using segmentation and classification[J]. Machine Intelligence Research, 2022, 19(6): 563-580. [49] ZHANG X, LIN Y, LI L, et al. MA‐ResUNet: multi‐attention optic cup and optic disc segmentation based on improved U‐Net[J]. IET Image Processing, 2024, 18(12): 3128-3142. [50] JIANG Y, MA Z, WU C, et al. RSAP-Net: joint optic disc and cup segmentation with a residual spatial attention path module and MSRCR-PT pre-processing algorithm[J]. BMC Bioinformatics, 2022, 23(1): 523. [51] WANG R, LEI T, CUI R, et al. Medical image segmentation using deep learning: a survey[J]. IET Image Processing, 2022, 16(5): 1243-1267. [52] MALLICK S, PAUL J, SIL J. Response fusion attention U-ConvNext for accurate segmentation of optic disc and optic cup[J]. Neurocomputing, 2023, 559: 126798. [53] ALAM A U I, ISLAM S P, HASAN S M M, et al. Optic disc and cup segmentation via enhanced U-Net with residual and attention mechanisms[C]//Proceedings of the 2024 6th International Conference on Electrical Engineering and Information & Communication Technology(ICEEICT), 2024: 329-334. [54] DEWA J K, RACHMAWATI E, KOSALA G. Investigating self-attention in Swin-Unet model for disc and cup segmentation[C]//Proceedings of the 2023 10th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 2023: 401-406. [55] PENG H, WANG G. Cup and disc segmentation algorithm based on improved Swin-UNet model[C]//Proceedings of the 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference(IAEAC), 2024: 485-488. [56] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [57] LIU Y, WU J, ZHU Y, et al. Combined optic disc and optic cup segmentation network based on adversarial learning[J]. IEEE Access, 2024, 12:104898-104908. [58] GOBINATH C, GOPINATH M P. Deep convolutional neural network for glaucoma detection based on image classification[J]. Journal of Intelligent & Fuzzy Systems, 2024, 46(1): 1957-1971. [59] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680. [60] ISSAC A, SARATHI M P, DUTTA M K. An adaptive threshold based image processing technique for improved glaucoma detection and classification[J]. Computer Methods and Programs in Biomedicine, 2015, 122(2): 229-244. [61] 马晓月,陈媛媛. 基于对抗学习和引导机制的视盘和视杯联合分割[J]. 计算机工程, 2024, 50(12): 59-69. MA X Y, CHEN Y Y. Joint optic disc and optic cup segmentation based on adversarial learning and guidance mechanism[J]. Computer Engineering, 2024, 50(12): 59-69. [62] MEENAKSHI DEVI P, GNANAVEL S, NARAYANA K E, et al. Novel methods for diagnosing glaucoma: segmenting optic discs and cups using ensemble learning algorithms and CDR ratio analysis[J]. IETE Journal of Research, 2024, 70(8): 6828-6847. [63] GAO X R, WU F, YUHAS P T, et al. Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection[J]. Scientific Reports, 2024, 14(1): 4494. [64] KIM J, TRAN L, PETO T, et al. Deep learning and ensemble method for optic disc and cup segmentation[C]//Proceedings of the 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2022: 1-8. [65] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28: 41-75. [66] PASCAL L, PERDOMO O J, BOST X, et al. Multi-task deep learning for glaucoma detection from color fundus images[J]. Scientific Reports, 2022, 12(1): 12361. [67] LENKA S, MAYALURI Z L, PANDA G, et al. Glaucoma detection from retinal fundus images using graph convolution based multi-task model[J]. Authorea Preprints, 2023,11:100931. [68] LU S, ZHAO H, LIU H, et al. PKRT-Net: prior knowledge-based relation transformer network for optic cup and disc segmentation[J]. Neurocomputing, 2023, 538: 126183. [69] XIONG H, LIU S, SHARAN R V, et al. Weak label based Bayesian U-Net for optic disc segmentation in fundus images[J]. Artificial Intelligence in Medicine, 2022, 126: 102261. [70] HERVELLA á S, ROUCO J, NOVO J, et al. End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images[J]. Applied Soft Computing, 2022, 116: 108347. [71] LIU B, PAN D, SHUAI Z, et al. ECSD-Net: a joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation[J]. Computer Methods and Programs in Biomedicine, 2022, 213: 106530. [72] CHEN Z, PAN Y, XIA Y. Reconstruction-driven dynamic refinement based unsupervised domain adaptation for joint optic disc and cup segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(7): 3537-3548. [73] LIU P, TRAN C T, KONG B, et al. CADA: multi-scale collaborative adversarial domain adaptation for unsupervised optic disc and cup segmentation[J]. Neurocomputing, 2022, 469: 209-220. [74] ZHAO A, SU H, SHE C, et al. Joint optic disc and cup segmentation based on elliptical-like morphological feature and spatial geometry constraint[J]. Computers in Biology and Medicine, 2023, 158: 106796. [75] ZHANG F, LI S, DENG J. Unsupervised domain adaptation with shape constraint and triple attention for joint optic disc and cup segmentation[J]. Sensors, 2022, 22(22): 8748. [76] HE Y, KONG J, LIU D, et al. Self-ensembling with mask-boundary domain adaptation for optic disc and cup segmentation[J]. Engineering Applications of Artificial Intelligence, 2024, 129: 107635. [77] LI Z, ZHAO C, HAN Z, et al. TUNet and domain adaptation based learning for joint optic disc and cup segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107209. [78] GONG R, LI W, CHEN Y, et al. Dlow: domain flow for adaptation and generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2477-2486. [79] CHEN Z, PAN Y, YE Y, et al. TriLA: triple-level alignment based unsupervised domain adaptation for joint segmentation of optic disc and optic cup[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(9): 5497-5508. [80] HUANG L, ZHANG N, YI Y, et al. SAMCF: adaptive global style alignment and multi-color spaces fusion for joint optic cup and disc segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108639. [81] HE Y, KONG J, LI J, et al. Entropy and distance-guided super self-ensembling for optic disc and cup segmentation[J]. Biomedical Optics Express, 2024, 15(6): 3975-3992. [82] MENG Y, ZHANG H, ZHAO Y, et al. Dual consistency enabled weakly and semi-supervised optic disc and cup segmentation with dual adaptive graph convolutional networks[J]. IEEE Transactions on Medical Imaging, 2022, 42(2): 416-429. [83] HERVELLA á S, RAMOS L, ROUCO J, et al. Multi-modal self-supervised pre-training for joint optic disc and cup segmentation in eye fundus images[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), 2020: 961-965. [84] SUDHAN M B, SINTHUJA M, PRAVISHT RAJA S, et al. Segmentation and classification of glaucoma using U‐Net with deep learning model[J]. Journal of Healthcare Engineering, 2022 (1): 1601354. [85] LATIF J, TU S, XIAO C, et al. ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images[J]. SN Applied Sciences, 2022, 4(4): 98. [86] SANGHAVI J, KURHEKAR M. An efficient framework for optic disk segmentation and classification of glaucoma on fundus images[J]. Biomedical Signal Processing and Control, 2024, 89: 105770. [87] WONG D W K, LIU J, LIM J H, et al. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images[C]//Proceedings of the Medical Imaging 2009: Computer-Aided Diagnosis, Lake Buena Vista (Orlando Area), Florida, United States, 2009: 459-466. [88] YANG K, JIANG W, SHI Y, et al. Cup-disk ratio segmentation joint with key retinal vascular information under diagnostic and screening scenarios[C]//Proceedings of the Computer Graphics International Conference. Cham: Springer Nature Switzerland, 2023: 313-326. [89] LI F, XIANG W, ZHANG L, et al. Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network[J]. Eye,2022, 37(6): 1080-1087. [90] ELMANNAI H, ALHUSSAN A A, AYADI M, et al. An improved deep learning framework for automated optic disc localization and glaucoma detection[J]. Computer Modeling in Engineering & Sciences, 2024, 140(2): 1429-1457. [91] 徐光宪,冯春,马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792. XU G X, FENG C, MA F. Review of medical image segmentation based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8):1776-1792. [92] ZHOU W, JI J, JIANG Y, et al. EARDS: EfficientNet and attention-based residual depth-wise separable convolution for joint OD and OC segmentation[J]. Frontiers in Neuroscience, 2023, 17: 1139181. [93] VEENA H N, MURUGANANDHAM A, KUMARAN T S. A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(8): 6187-6198. [94] 蓝子俊,谢珺,郭燕,等. 基于线性化注意力和双重注意力的视盘分割模型[J]. 生物医学工程学杂志, 2023, 40(5): 920-927. LAN Z J, XIE J, GUO Y, et al. Optic cup and disc segmentation model based on linear attention and dual attention[J]. Journal of Biomedical Engineering, 2023, 40(5):920-927. [95] LI W, HUANG W. Joint optic disc and cup segmentation with parallel cooperative diffusion model[C]//Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2023: 2017-2020. [96] YAN S, PAN X, WANG Y. MRSNet: joint consistent optic disc and cup segmentation based on large kernel residual convolutional attention and self-attention[J]. Digital Signal Processing, 2024, 145: 104308. [97] VIRBUKAIT? S, BERNOTAVI?IEN? J, IMBRA?IEN? D. Glaucoma identification using convolutional neural networks ensemble for optic disc and cup segmentation[J]. IEEE Access, 2024,12: 82720-82729. [98] LUO X, WANG G, LIAO W, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency[J]. Medical Image Analysis, 2022, 80: 102517. [99] WANG H, WANG Z, WANG X, et al. AnatSwin: an anatomical structure-aware transformer network for cardiac MRI segmentation utilizing label images[J]. Neurocomputing, 2024, 577: 127379. [100] DING F, YANG G, WU J, et al. High-order attention networks for medical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2020: 253-262. [101] HUANG X, KONG X, SHEN Z, et al. GRAPE: a multi-modal dataset of longitudinal follow-up visual field and fundus images for glaucoma management[J]. Scientific Data, 2023, 10(1): 520. [102] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [103] RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?” Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 1135-1144. [104] SCOTT M, SU-IN L. A unified approach to interpreting model predictions[C]//Advances in Neural Information Processing Systems, 2017: 4765-4774. |
| [1] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [2] | LUO Yiheng, ZHANG Junhua, ZHANG Jianqing. Semi-Supervised Medical Image Segmentation with Label-Part Switching and Cross-Teaching [J]. Computer Engineering and Applications, 2025, 61(4): 253-261. |
| [3] | GUO Peiyan, FAN Jiulun, LIU Heng. Improved RHGSO-FC Algorithm for GMM Clustering Segmentation of RGB-D Images [J]. Computer Engineering and Applications, 2025, 61(2): 234-246. |
| [4] | LI Feixiang, JIANG Ailian. MSMVT: Semi-Supervised Framework with Multi-Scale and Multi-View Transformer for Medical Image Segmentation [J]. Computer Engineering and Applications, 2025, 61(2): 273-282. |
| [5] | CHEN Xi, LIU Jianping, ZHOU Guomin, WANG Jian, ZHANG Yue, XING Jialu. Survey of Advances in Semi-Supervised Learning Methods for Crop Image Processing Applications [J]. Computer Engineering and Applications, 2025, 61(12): 45-68. |
| [6] | DENG Xiquan, CHEN Gang. ConvUCaps: Medical Image Segmentation Model Based on Convolutional Capsule Network [J]. Computer Engineering and Applications, 2024, 60(8): 258-266. |
| [7] | HU Wei, XU Qiaozhi, GE Xiangwei, YU Lei. Review of Unsupervised Domain Adaptation in Medical Image Segmentation [J]. Computer Engineering and Applications, 2024, 60(6): 10-26. |
| [8] | LYU Yang, WU Jingjing, ZHUANG Zhishan, AN Congying. Array Target Image Segmentation with Boundary-Aware SegFormer Network [J]. Computer Engineering and Applications, 2024, 60(24): 188-199. |
| [9] | NIU Liang, ZHANG Menglu, CHEN Binghua, JIANG Shu, LU Luqi, XU Xiao, NIU Qiang. Fetal Echocardiogram Segmentation Algorithm for Class Imbalance [J]. Computer Engineering and Applications, 2024, 60(21): 236-243. |
| [10] | WEI Zheliang, LI Yueyang, LUO Haichi. Scene Text Detection Based on Multi-Scale Pooling and Bidirectional Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(2): 154-161. |
| [11] | ZHANG Zhen, PENG Jinghao, TIAN Hongpeng. Design of Loss Function Considering Data Distribution [J]. Computer Engineering and Applications, 2024, 60(19): 242-249. |
| [12] | SUN Xing, CAI Xiaohong, LI Ming, ZHANG Shuai, MA Jingang. Review of Application of Visual Foundation Model SAM in Medical Image Segmentation [J]. Computer Engineering and Applications, 2024, 60(17): 1-16. |
| [13] | ZHOU Huaping, DENG Bin. DeepLabv3+ Lightweight Image Segmentation Algorithm Based on Multilevel Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(16): 269-275. |
| [14] | CUI Ke, TIAN Qichuan, LIAN Lu. Review of Medical Image Segmentation Algorithms Based on U-Net Variants [J]. Computer Engineering and Applications, 2024, 60(11): 32-49. |
| [15] | SHI Lei, JI Qingyu, CHEN Qingwei, ZHAO Hengyi, ZHANG Junxing. Review of Research on Application of Vision Transformer in Medical Image Analysis [J]. Computer Engineering and Applications, 2023, 59(8): 41-55. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||