[1] 王冉, 黄裕春, 张军武, 等. 基于低秩和稀疏分解的滚动轴承故障特征提取方法对比研究[J]. 振动与冲击, 2023, 42(21): 182-191.
WANG R, HUANG Y C, ZHANG J W, et al. Contrastive study on fault feature extraction methods for rolling bearing based on low rank and sparse decomposition[J]. Journal of Vibration and Shock, 2023, 42(21): 182-191.
[2] 段晓燕, 焦孟萱, 雷春丽, 等. 基于MTF-MSMCNN的小样本滚动轴承故障诊断方法[J]. 航空动力学报, 2024, 39(1): 240-252.
DUAN X Y, JIAO M X, LEI C L, et al. A rolling bearing fault diagnosis method based on MTF-MSMCNN with small sample[J]. Journal of Aerospace Power, 2024, 39(1): 240-252.
[3] 阮慧, 黄细霞, 李登峰, 等. 滚动轴承细粒度故障诊断研究[J]. 计算机工程与应用, 2024, 60(6): 312-322.
RUAN H, HUANG X X, LI D F, et al. Research on fine-grained fault diagnosis of rolling bearings[J]. Computer Engineering and Applications, 2024, 60(6): 312-322.
[4] 李贝贝, 彭力. 基于改进自编码网络的轴承振动异常检测[J]. 计算机科学与探索, 2022, 16(1): 163-175.
LI B B, PENG L. Bearing vibration abnormal detection based on improved autoencoder network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 163-175.
[5] XIONG J, LIU M, LI C, et al. A bearing fault diagnosis method based on improved mutual dimensionless and deep learning[J]. IEEE Sensors Journal, 2023, 23(16): 18338-18348.
[6] ZHAO X, GUO H. Rolling bearing fault diagnosis model based on DSCB-NFAM[J]. Measurement Science and Technology, 2023, 35(1): 15029.
[7] TONG A, ZHANG J, XIE L. Intelligent fault diagnosis of rolling bearing based on Gramian angular difference field and improved dual attention residual network[J]. Sensors, 2024, 24(7): 2156.
[8] XU Z, BASHIR M, ZHANG W, et al. An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion[J]. Information Fusion, 2022, 86: 17-29.
[9] ZHANG K, GAO T, SHI H. Bearing fault diagnosis method based on multi-source heterogeneous information fusion[J]. Measurement Science and Technology, 2022, 33(7): 75901.
[10] GAO T, YANG J, ZHANG B, et al. A fault diagnosis method based on feature-level fusion of multi-sensor information for rotating machinery[J]. Measurement Science and Technology, 2023, 35(3): 36109.
[11] WAN S, ZHANG X, DOU L. Compound fault diagnosis of bearings using improved fast spectral kurtosis with VMD[J]. Journal of Mechanical Science and Technology, 2018, 32: 5189-5199.
[12] ELBOUCHIKHI E, CHOQUEUSE V, AMIRAT Y, et al. An efficient Hilbert-Huang transform-based bearing faults detection in induction machines[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 401-413.
[13] DIAO N, WANG Z, MA H, et al. Fault diagnosis of rolling bearing under variable working conditions based on CWT and T-ResNet[J]. Journal of Vibration Engineering & Technologies, 2023, 11(8): 3747-3757.
[14] AGUSTIN X M, SAMSON E J, OSTIA C. Application of SVM classification technique in single-phase AC motor bearing fault diagnosis using motor current analysis with MRA-FFT as feature extractor and CFFS as feature selection method[C]//Proceedings of the 2023 IEEE 14th Control and System Graduate Research Colloquium, 2023: 208-213.
[15] ZHANG Q, DENG L. An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network[J]. Journal of Failure Analysis and Prevention, 2023, 23(2): 795-811.
[16] TANG X, XU Z, WANG Z. A novel fault diagnosis method of rolling bearing based on integrated vision transformer model[J]. Sensors, 2022, 22(10): 3878.
[17] ZHANG A, LI S, CUI Y, et al. Limited data rolling bearing fault diagnosis with few-shot learning[J]. IEEE Access, 2019, 7: 110895-110904.
[18] 周宏娣, 黄涛, 李智, 等. 基于流形特征域适配的滚动轴承故障诊断[J]. 振动与冲击, 2024, 43(5): 94-102.
ZHOU H D, HUANG T, LI Z, et al. Rolling bearing fault diagnosis based on manifold feature domain adaptation[J]. Journal of Vibration and Shock, 2024, 43(5): 94-102.
[19] SHE D, JIA M. Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate[J]. Measurement, 2019, 135: 368-375.
[20] 张洪亮, 余其源, 秦超群, 等. 基于信息融合及双连接注意力残差网络的轴承故障诊断[J]. 振动与冲击, 2023, 42(20): 114-123.
ZHANG H L, YU Q Y, QIN C Q, et al. Bearing fault diagnosis based on double-connected attention residual network and information[J]. Journal of Vibration and Shock, 2023, 42(20): 114-123.
[21] LI S, ZHAO X. A lightweight multi-feature fusion vision transformer bearing fault diagnosis method with strong local sensing ability in complex environments[J]. Measurement Science and Technology, 2024, 35(6): 65104. |