Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (15): 11-23.DOI: 10.3778/j.issn.1002-8331.2402-0008
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Jiayi, MA Zhiliang, CHENG Lijie, JI Xinlin
Online:
2024-08-01
Published:
2024-07-30
李佳益,马智亮,陈礼杰,季鑫霖
LI Jiayi, MA Zhiliang, CHENG Lijie, JI Xinlin. Comprehensive Review of Multimodal Data Fusion Methods for Construction Robot Localization[J]. Computer Engineering and Applications, 2024, 60(15): 11-23.
李佳益, 马智亮, 陈礼杰, 季鑫霖. 面向施工机器人定位的多模态数据融合方法研究综述[J]. 计算机工程与应用, 2024, 60(15): 11-23.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2402-0008
[1] TONG S H, XU W, ZHANG X C, et al. Experimental and theoretical analysis on truss construction robot: automatic grasping and hoisting of concrete composite floor slab[J]. Journal of Field Robotics, 2023, 40: 272-288. [2] DING L Y, JIANG W G, ZHOU Y, et al. BIM-based task-level planning for robotic brick assembly through image-based 3D modeling[J]. Advanced Engineering Informatics, 2020, 43: 100993. [3] JI J J, SHAN J, MISYURIN S Y, et al. Localization on a-prior information of plane extraction[J]. Plos One, 2023, 18(5). [4] CHEN J J, LI S, LU W S. Align to locate registering photogrammetric point clouds to BIM for robust[J]. Building and Environment, 2022, 209: 1-14. [5] 帅子沛. 室内建筑抹灰机器人智能导航研究[D]. 成都: 电子科技大学, 2022. SHUAI Z P. Research on intelligent navigation of plastering robots for indoor buildings[D]. Chengdu: University of Electronic Science and Technology of China, 2022. [6] ZHANG Z J, CHENG X J, YANG B L, et al. Exploration of indoor barrier-free plane intelligent lofting system combining BIM and multi-sensors[J]. Remote Sensing, 2020, 12(20): 3306. [7] LUNDEEN K M, KAMAT V R, MENASSA C, et al. Autonomous motion planning and task execution in geometrically adaptive robotized construction work[J]. Automation in Construction, 2019, 100: 24-45. [8] 程时伟. 人机交互概论[M]. 杭州: 浙江大学出版社, 2018. CHENG S W. Introduction to human-computer interaction[M]. Hanghzou: Zhejiang University Press, 2018. [11] HUANG J H, JUNGINGER S, LIU H, et al. Indoor positioning systems of mobile robots a review[J]. Robots, 2023, 12(2): 47. [12] 李学友. IMU/DGPS 辅助航空摄影测量原理、方法及实践[D]. 郑州: 中国人民解放军信息工程大学, 2005. LI X Y. IMU/DGPS-supported photogrammetry-theory, approaches and practice, institute of surveying and mapping[D]. Zhengzhou: Information Engineering University, 2005. [13] SHEN D, XU Y H, HUANG Y K. Research on 2D-SLAM of indoor mobile robot based on laser radar[C]//Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering, Shenzhen, China, July 19-21, 2019. [14] FU Q, YU H S, LAI L H, et al. A robust RGB-D SLAM system with points and lines for low texture indoor environments[J]. IEEE Sensors Journal, 2019, 19(21): 9908-9920. [15] YANG N, STUMBERG L V, WANG R, et al. D3VO: deep depth, deep pose and deep uncertainty for monocular visual odometry[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1278-1289. [16] SURIYA D. M, SRIVENKATA K S, SUNDARRAJAN G K S, et al. A robust approach for improving the accuracy of IMU based indoor mobile robot localization[C]//Proceedings of the 13th International Conference on Informatics in Control, 2016: 436-445. [17] ILYAS M, KHAW H Y, SELVARAJ N M, et al. Robot-assisted object detection for construction automation data and information-driven approach[J]. IEEE/ASME Transaction on Mechatronics, 2021, 26(6): 2845-2856. [18] 吴海兵. 基于RFID相位特征的机器人定位方法研究[D]. 武汉: 华中科技大学, 2020. WU H B. Research of phase-based RFID localization method for robot[D]. Wuhan: Huazhong University of Science and Technology, 2020. [19] LIU J, LI T R, XIE P, et al. Urban big data fusion based on deep learning: an overview[J]. Information Fusion, 2020, 53: 123-133. [20] 张毅, 杜凡宇, 罗元, 等. 一种融合激光和深度视觉传感器的SLAM地图创建方法[J]. 计算机应用研究, 2016, 33(10): 2970-2972. ZHANG Y, DU F Y, LUO Y, et al. Map-building approach based on laser and depth visual sensor fusion SLAM[J]. Application Research of Computers, 2016, 33(10): 2970-2972. [21] 张红, 程传祺, 徐志刚, 等. 基于深度学习的数据融合方法研究综述[J]. 计算机工程与应用, 2020, 56(24): 1-11. ZHANG H, CHENG C Q, XU Z G, et al. Survey of data fusion based on deep learning[J]. Computer Engineering and Applications, 2020, 56(24): 1-11. [22] WU J, SU Y H, CHENG Y W et al. Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system[J]. Applied Soft Computing, 2018, 68: 13-23. [23] 吴艳. 多传感器数据融合算法研究[D]. 西安: 西安电子科技大学, 2004. WU Y. Revisions to the JDL data fusion model[D]. Xi’an: Xidian University, 2004. [24] XU Z, GUO S, SONG T, ZENG L D. Localization of mobile robot aided for large-scale construction based on optimized artificial landmark map in ongoing scene[J]. Computer Mode- ling in Engineering & Sciences, 2022(3): 1853-1882. [25] 杨清梅, 王立权, 王岚, 等. 基于数据融合的拱泥机器人定位方法[J]. 哈尔滨工程大学学报, 2003, 24(4): 363-367. YANG Q M, WANG L Q, WANG L, et al. Location of move-in-mud robot based on data fusion[J]. Journal of Harbin Engineering University, 2003, 24(4): 363-367. [26] 艾青林, 刘刚江, 徐巧宁. 动态环境下基于改进几何与运动约束的机器人RGB-D SLAM算法[J]. 机器人, 2021, 43(2): 167-176. AI Q L, LIU G J, XU Q N, et al. An RGB-D SLAM algorithm for robot based on the improved geometric and motion constraints in dynamic environment[J]. Robot, 2021, 43(2): 167-176. [27] 汪生浩, 于铭铭, 朱猛猛, 等. 应用于移动机器人的钢筋交叉点视觉检测系统研究[J]. 工业控制计算机, 2023, 36(6): 83-85. WANG S H, YU M M, ZHU M M, et al. Research on visual inspection system of rebar intersection applied to mobile robot[J]. Industrial Control Computer, 2023, 36(6): 83-85. [28] 王洲, 杨明欣, 王新媛. 基于多传感器融合的多旋翼无人机近地面定位算法[J].成都信息工程大学学报, 2018(3):261-267. WANG Z,YANG M X,WANG X Y. Location algorithm based on multi-sensor fusion for multi-rotor aerial vehiclesto flight near the ground[J]. Journal of Chengdu University of Information Technology, 2018(3):261-267. [29] 李中道, 刘元盛, 常飞翔, 等. 室内环境下UWB与LiDAR融合定位算法研究[J]. 计算机工程与应用, 2021, 57(6): 260-266. LI Z D, LIU Y S, CHANG F X, et al. Research on UWB and LiDAR fusion positioning algorithm in indoor environment[J]. Computer Engineering and Applications, 2021, 57(6): 260-266. [30] 李帅鑫, 李广云, 王力, 等. LiDAR/IMU紧耦合的实时定位方法[J], 自动化学报, 2021, 47(6): 1377-1389. LI S X, LI G Y, WANG L, et al. LiDAR/IMU tightly coupled real-time localization method[J]. Acta Automatica Sinica, 2021, 47(6): 1377-1389. [31] 董伯麟, 柴旭. 基于IMU/视觉融合的导航定位算法研究[J]. 压电与声光, 2020, 42(5): 724-728. DONG B L, CHAI X. Research on navigation and localization algorithm based on IMU/vision fusion[J]. Piezoelectricity and Acoustooptics, 2020, 42(5): 724-728. [32] 章弘凯, 陈年生, 代作晓, 等. 一种多层次数据融合的SLAM定位算法[J]. 机器人, 2021, 43(6): 641-652. ZHANG H K, CHEN N S, DAI Z X, et al. A multi-level data fusion localization algorithm for SLAM[J]. Robot, 2021, 43(6): 641-652. [33] 李昀泽. 基于激光雷达的室内机器人SLAM研究[D]. 广州: 华南理工大学, 2017. LI Y Z. Research on SLAM of indoor robot based on LiDAR[D]. Guangzhou: South China University of Technology, 2017. [34] 陈小伟. 基于BIM特征的施工机器人定位建图与环境理解方法研究[D]. 天津: 河北工业大学, 2022. CHENG X W. Research on construction robot localization mapping and environment understanding based on BIM features[D]. Tianjin: Hebei University of Technology, 2022. [35] PEAVY M, KIM P, OVEDIRAN H, et al. Integration of real-time semantic building map updating with adaptive monte carlo localization (AMCL) for robust indoor mobile robot localization[J]. Advanced Engineering Informatics, 2023, 13(2): 909. [36] LI C, ZHUANG Y, YAN F. Deep sensor fusion between 2D laser scanner and IMU for mobile robot localization[J]. IEEE Sensors Journal, 2021, 21(6): 8501-8509. [37] LI H J, MAO Y, YOU W, et al. A neural network approach to indoor mobile robot localization[C]//Proceedings of the 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science, 2020. [38] ZHAO X, CHEAH C C. BIM-based indoor mobile robot initialization for construction automation using object detection[J]. Automation in Construction, 2022, 146: 104647. [39] SCHAUB L, PODKOSOVA L, SCHOENAUER C, et al. Point cloud to BIM registration for robot localization and augmented reality[C]//Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, 2022: 77-84. [40] MOURA M S, RIZZO C, SERRANO D. BIM-based loca- lization and mapping for mobile robots in construction[C]//Proceedings of the IEEE International Conference on Autonomous Robot Systems and Competitions, 2021: 12-18. [41] 刘今越, 陈小伟, 贾晓辉, 等. BIM校正累计误差的激光里程计求解方法[J]. 仪器仪表学报, 2022, 43(1): 93-102. LIU J Y, CHENG X W, JIA X H, et al. The solution method of laser odometer for BIM correction of cumulative error[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 93-102. [42] CHEN Y, PERVAN B. Landmark augmentation for mobile robot localization safety[J]. IEEE Robotics and Automation Letters, 2021, 6(1): 119-126. [43] HALDER S, AFSARI K, KOWSKI J S, et al. Real-time and remote construction progress monitoring with a quadruped robot using augmented reality[J]. Buildings, 2022, 12(11). [44] 焦传佳. 基于Apriltag图像识别的移动机器人定位研究[J]. 电子测量与仪器学报, 2021, 35(1): 110-119. JIAO C J. Research on positioning of mobile robot based on AprilTag image recognition[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 110-119. [45] KAYHANI N, MCCABE B, ABDELAAL A, et al. Tag-based indoor localization of UAVs in construction environments: opportunities and challenges in practice[C]//Proceedings of the Construction Research Congress, 2020: 226-235. [46] KAYHANIA N, ZHAO W, MCCABE B, et al. Tag-based visual-inertial localization of unmanned aerial vehicles in indoor construction environments using an on-manifold extended Kalman filter[J]. Automation in Construction, 2022, 135: 1-20. [47] LI Z Q, HUANG J D. Study on the use of Q-R codes as landmarks for indoor positioning preliminary results[C]//Proceedings of the IEEE/ION Position, Location and Navigation Symposium, 2018: 1270-1276. [48] 王家恩, 肖献强. 基于 QR 码视觉定位的移动机器人复合导航方法研究[J]. 仪器仪表学报, 2018, 39(8): 230-238. WANG J N, XIAO X Q. Mobile robot integrated navigation method based on QR code vision positioning[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 230-238. [49] 郭金迪. 面向建筑环境的自主打磨移动机器人研究[D]. 沈阳: 东北大学, 2020. GUO J D. Research on autonomous polishing mobile robot for building environment[D]. Shenyang: Northeastern University, 2020. [50] 张帅. 地砖铺设机器人系统设计及运动规划研究[D]. 南京: 南京航空航天大学, 2020. ZHANG S. Research on design and motion planning of robotic floor-tiling system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. [51] LI X, JIANG X, LIU Y. Construction robot localization system based on multi-sensor fusion and 3D construction drawings[C]//Proceedings of the International Conference on Robotics and Biomimetics, 2021: 27-31. [52] KIM P, PARK J, CHO Y K, et al. UAV-assisted autonomous mobile robot navigation for as-is 3D data collection and registration in cluttered environments[J]. Automation in Construction, 2019, 106: 102918. [53] KIM P, PARK J, CHO Y K. As-is geometric data collection and 3D visualization through the collaboration between UAV and UGV[C]//Proceedings of the International Symposium on Automation and Robotics in Construction, 2019. [54] 王舜. 瓷砖铺贴机器人的瓷砖三维空间定位方法研究 [J]. 国外电子测量技术, 2022, 41(10): 85-91. WANG S. Design of tile three-dimensional space positioning system for floor-tiling robot[J]. Foreign Electronic Measurement Technology, 2022, 41(10): 85-91. [55] 许镟. 无人推土机系统位姿估计与室外场景建图技术研究[D]. 武汉: 华中科技大学, 2022. XU X. Research on pose estimation and outdoor scene mapping technology of unmanned bulldozer system[D]. Wuhan: Huazhong University of Science and Technology, 2022. [56] 赵洋, 刘国良, 田国会, 等. 基于深度学习的视觉SLAM综述[J]. 机器人, 2017, 39(6): 889-896. ZHAO Y, LIU G L, TIAN G H, et al. A survey of visual SLAM based on deep learning[J]. Robot, 2017, 39(6): 889-896. [57] MENG T, JING X Y, YAN Z, et al. A survey on machine learning for data fusion[J]. Information Fusion, 2020, 57: 115-129. [58] 程志伟. 基于力反馈和视觉的板材安装定位研究[D]. 天津: 河北工业大学, 2010. CHENG Z W. Research on slabstone installation and positioning based on force feedback and vision[D]. Tianjin: Hebei University of Technology, 2010. [59] 孙建刚, 高娜, 杨冬, 等. 建筑板材安装机器人视觉系统及标定方法研究[J]. 河北工业大学学报, 2013, 42(4): 64-68. SUN J G, GAO N, YANG D, et al. Research of the building slabstone installing robot vision system and the calibration method[J]. Journal of Hebei University of Technology, 2013, 42(4): 64-68. [60] WANG W D, ZHAO H P, CHI S Y, et al. A control method for hydraulic manipulators in automatic emulsion filling[J]. Automation in Construction, 2018, 91: 92-99. [61] ZHAO Q J, LI X F, LU J X, et al. Monocular vision-based parameter estimation for mobile robotic painting[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(10): 3589-3599. [62] TSURUTA T, MIURA K, MIYAGUCHI M. Mobile robot for marking free access floors at construction sites[J]. Automation in Construction, 2019, 107: 102912. |
[1] | LI Jun, CAO Lin, ZHANG Fan, DU Kangning, GUO Yanan. Siamese Networks for Object Tracking on Statistical Characteristics of Distributions [J]. Computer Engineering and Applications, 2024, 60(8): 213-224. |
[2] | WANG Jiayi, CHEN Ziyang, YUAN Xiaochen, ZHAO Genping. Perceptual Feature Fusion Network for Cross-View Geo-Localization [J]. Computer Engineering and Applications, 2024, 60(3): 255-262. |
[3] | YU Junqi, CHEN Yisheng, FENG Chunyong, SU Yucong, GUO Jugang. Review of Research on Local Path Planning for Intelligent Construction Robots [J]. Computer Engineering and Applications, 2024, 60(10): 16-29. |
[4] | LIU Mingzhe, XU Guanghui, TANG Tang, QIAN Xiaojian, GENG Ming. Review of SLAM Based on Lidar [J]. Computer Engineering and Applications, 2024, 60(1): 1-14. |
[5] | HUANG Zhibin, CHEN Xun. UAV Cluster Forest Fire Detection Method Based on PSO-GA Algorithm [J]. Computer Engineering and Applications, 2023, 59(9): 289-294. |
[6] | LIU Jiamin, CHEN Shenglun, WANG Zhihui, LI Haojie. Marker-Assisted Multi-Feature Fusion Localization Method [J]. Computer Engineering and Applications, 2023, 59(6): 187-195. |
[7] | PENG Zexin, ZENG Bi, LIU Jianqi. Global Localization Method Based on Global Feature Point Matching [J]. Computer Engineering and Applications, 2023, 59(3): 264-275. |
[8] | ZHANG Wenwei, FU Qifan, WANG Yingguan, FU Hengcheng, WEI Zhi, DING Huaze. Improved PSPNet Artillery Flame Segmentation Algorithm and Applications [J]. Computer Engineering and Applications, 2023, 59(23): 154-164. |
[9] | GAO Hui, DENG Miaolei, ZHAO Wenjun, CHEN Faquan, ZHANG Dexian. Application of Improved Transformer Based on Weakly Supervised in Crowd Localization [J]. Computer Engineering and Applications, 2023, 59(19): 92-98. |
[10] | XU Chundong, LIU Hao, MIN Yuan, ZHEN Yadi. Sound Event Localization and Detection Based on Dual Attention [J]. Computer Engineering and Applications, 2023, 59(19): 99-105. |
[11] | GUO Wenbin, YANG Xingming, JIANG Zheyuan, WU Kewei, XIE Zhao. Multi-Temporal Scales Consensus for Weakly Supervised Temporal Action Localization [J]. Computer Engineering and Applications, 2023, 59(10): 151-161. |
[12] | CHEN Dan, WU Xin. Research on Improved Laser SLAM Algorithm for Mobile Robots [J]. Computer Engineering and Applications, 2022, 58(4): 163-168. |
[13] | WANG Heng, WU Bo, WANG Zhenming, YU Jianfeng. SLAM System Based on Depth Estimation Network SS-Net [J]. Computer Engineering and Applications, 2022, 58(24): 265-275. |
[14] | YUAN Saimei, HUANG Yimeng, FENG Lihang, ZHU Wenjun, YI Yang. X_YOWO:Real-Time Human Behavior Positioning Method [J]. Computer Engineering and Applications, 2022, 58(20): 148-156. |
[15] | MA Jingxuan, WANG Hongyu, CAO Yan, QIAO Wenchao, HAN Jiaozhi, WU Changxue. Implementation of Densified Mapping of Monocular ORB-SLAM for Embedded Platform [J]. Computer Engineering and Applications, 2022, 58(16): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||