
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (5): 55-75.DOI: 10.3778/j.issn.1002-8331.2404-0011
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Jia, MA Zhiqiang, LYU Kai, GUO Siyuan, ZHOU Yutong, XU Biqi
Online:2025-03-01
Published:2025-03-01
刘佳,马志强,吕凯,郭思源,周钰童,许璧麒
LIU Jia, MA Zhiqiang, LYU Kai, GUO Siyuan, ZHOU Yutong, XU Biqi. Survey of Emotion Generation for Emotional Dialogue[J]. Computer Engineering and Applications, 2025, 61(5): 55-75.
刘佳, 马志强, 吕凯, 郭思源, 周钰童, 许璧麒. 面向情感对话的情绪生成研究综述[J]. 计算机工程与应用, 2025, 61(5): 55-75.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2404-0011
| [1] MINSKY M. The Society of mind[M]. New York: Simon and Schuster, 1988. [2] PICARD R W. Affective computing-MIT media laboratory perceptual computing section technical report no.321[R]. USA: Cambridge, 1995. [3] ROSALIND W. PicardAdventures in building emotional intelligence technologies[EB/OL]. (2017-12-19)[2023-04-01]. https://videolectures.net/aaai2017_picard_intelligence_technologies/. [4] WEIZENBAUM J. ELIZA: a computer program for the study of natural language communication between man and machine[J]. Communications of the ACM, 1966, 9(1): 36-45. [5] PATARANUTAPORN P, LIU R, FINN E, et al. Influencing human-AI interaction by priming beliefs about AI can increase perceived trustworthiness, empathy and effectiveness[J]. Nature Machine Intelligence, 2023, 5: 1076-1086. [6] ZHOU H, HUANG M L, ZHANG T Y, et al. Emotional chatting machine: emotional conversation generation with internal and external memory[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence, 2018: 730-738. [7] 赵妍妍, 陆鑫, 赵伟翔, 等. 情感对话技术综述[J]. 软件学报, 2024, 35(3): 1377-1402. ZHAO Y Y, LU X, ZHAO W X, et al. Survey on emotional dialogue techniques[J]. Journal of Software, 2024, 35(3): 1377-1402. [8] WEI W, LIU J Y, MAO X L, et al. Emotion-aware chat machine[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 1401-1410. [9] YANG H Q, SHEN J P. Emotion dynamics modeling via BERT[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, 2021. [10] ZHANG R, WANG Z Y, HUANG Z H, et al. Predicting emotion reactions for human-computer conversation: a variational approach[J]. IEEE Transactions on Human-Machine Systems, 2021, 51(4): 279-287. [11] GAO Y, LI Q. Artificial emotion modeling based on container (CUP) algorithm[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(2): 1173-1179. [12] SUN X, LI J, WEI X, et al. Emotional editing constraint conversation content generation based on reinforcement learning[J]. Information Fusion, 2020, 56: 70-80. [13] CHEN Z X, SONG R H, XIE X, et al. Neural response generation with relevant emotions for short text conversation[C]//Proceedings of the Natural Language Processing and Chinese Computing, 2019: 117-129. [14] ZOU C R, YIN Y F, HUANG F L. Attention-based emotion-assisted sentiment forecasting in dialogue[C]//Proceedings of the 2022 International Joint Conference on Neural Networks, 2022: 1-8. [15] MAO Y Y, CAI F, GUO Y P, et al. Incorporating emotion for response generation in multi-turn dialogues[J]. Applied Intelligence, 2022, 52(7): 7218-7229. [16] WEI W, LIU J Y, MAO X L, et al. Target-guided emotion-aware chat machine[J]. ACM Transactions on Information Systems, 2021, 39(4): 1-24. [17] HUO P, YANG Y, ZHOU J, et al. TERG: topic-aware emotional response generation for chatbot[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, 2020: 1-8. [18] 黄宏程, 李净, 胡敏, 等. 基于强化学习的机器人认知情感交互模型[J]. 电子与信息学报, 2021, 43(6): 1781-1788. HUANG H C, LI J, HU M, et al. Cognitive emotional interaction model of robot based on reinforcement learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1781-1788. [19] LU X, ZHAO W X, ZHAO Y Y, et al. A topic-enhanced approach for emotion distribution forecasting in conversations[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, 2023: 1-5. [20] LI D Y, ZHU X D, LI Y, et al. Enhancing emotion inference in conversations with commonsense knowledge[J]. Knowledge -Based Systems, 2021, 232: 107449. [21] YANG M, WANG Z W, XU Q C, et al. Leveraging hierarchical semantic-emotional memory in emotional conversation generation[J]. CAAI Transactions on Intelligence Technology, 2023, 8(3): 824-835. [22] MA Z Q, YANG R, DU B X, et al. A control unit for emotional conversation generation[J]. IEEE Access, 2020, 8: 43168-43176. [23] 马志强, 王春喻, 贾文超, 等. 情感导向对话回复生成模型[J]. 中文信息学报, 2023, 37(8): 104-114. MA Z Q, WANG C Y, JIA W C, et al. Emotion guided dialogue response generation model[J]. Journal of Chinese Information Processing, 2023, 37(8): 104-114. [24] KIM J, YOO J, LIM H, et al. Sentiment prediction using collaborative filtering[C]//Proceedings of the International AAAI Conference on Web and Social Media, 2013: 685-688. [25] WEN Z Y, CAO J N, YANG R S, et al. Automatically select emotion for response via personality-affected emotion transition[C]//Findings of the Association for Computational Linguistics, 2021. [26] HAYAT H, VENTURA C, LAPEDRIZA A. Predicting the subjective responses’ emotion in dialogues with multi-task learning[C]//Proceedings of the Pattern Recognition and Image Analysis, 2023: 693-704. [27] ZHOU Z Y, SHEN Y, CHEN X R, et al. GERP: a personality-based emotional response generation model[J]. Applied Sciences, 2023, 13(8): 5109. [28] MA Z Q, JIA W C, ZHOU Y T, et al. Personality enhanced emotion generation modeling for dialogue systems[J]. Cognitive Computation, 2024, 16(1): 293-304. [29] WEN Z Y, CAO J N, SHEN J X, et al. Personality-affected emotion generation in dialog systems[J]. ACM Transactions on Information Systems, 2024, 42(5): 1-27. [30] OJHA S, WILLIAMS M A, JOHNSTON B. The essence of ethical reasoning in robot-emotion processing[J]. International Journal of Social Robotics, 2018, 10(2): 211-223. [31] COLOMBO P, WITON W, MODI A, et al. Affect-driven dialog generation[C]//Proceedings of the 2019 Conference of the North, 2019: 3734-3743. [32] ASGHAR N, KOBYZEV I, HOEY J, et al. Generating emotionally aligned responses in dialogues using affect control theory[J]. arXiv:2003.03645, 2020. [33] SONG Z Q, ZHENG X Q, LIU L, et al. Generating responses with a specific emotion in dialog[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 3685-3695. [34] SHEN L, FENG Y. CDL: curriculum dual learning for emotion-controllable response generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 556-566. [35] YAO K C, ZHANG L B, LUO T J, et al. Non-deterministic and emotional chatting machine: learning emotional conversation generation using conditional variational autoencoders[J]. Neural Computing and Applications, 2021, 33(11): 5581-5589. [36] ZHOU Z H, LAN M, WU Y B. A neural generation-based conversation model using fine-grained emotion-guide attention[C]//Proceedings of the 2018 International Joint Conference on Neural Networks, 2018: 1-8. [37] XU W R, GU X S, CHEN G. Generating emotional controllable response based on multi-task and dual attention framework[J]. IEEE Access, 2019, 7: 93734-93741. [38] YAN M, LOU X R, CHAN C A, et al. A semantic and emotion-based dual latent variable generation model for a dialogue system[J]. CAAI Transactions on Intelligence Technology, 2023, 8(2): 319-330. [39] KONG X, LI B H, NEUBIG G, et al. An adversarial approach to high-quality, sentiment-controlled neural dialogue generation[J]. arXiv:1901.07129, 2019. [40] QIAN Y S, WANG B, MA S Z, et al, Think twice: a human-like twostage conversational agent for emotional response generation[C]//Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems, 2023: 727-736. [41] FIRDAUS M, THANGAVELU N, EKBAL A, et al. I enjoy writing and playing, do you?: A personalized and emotion grounded dialogue agent using generative adversarial network[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 2127-2138. [42] RASHKIN H, SMITH E M, LI M, et al. Towards empathetic open-domain conversation models: a new benchmark and dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 5370-5381. [43] DAVIS M H. Measuring individual differences in empathy: evidence for a multidimensional approach[J]. Journal of Personality and Social Psychology, 1983, 44(1): 113-126. [44] GAO J, LIU Y H, DENG H L, et al. Improving empathetic response generation by recognizing emotion cause in conversations[C]//Findings of the Association for Computational Linguistics, 2021: 807-819. [45] MAJUMDER N, HONG P F, PENG S S, et al. MIME: MIMicking emotions for empathetic response generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 8968-8979. [46] BAGHERI E, ROESLER O, VANDERBORGHT B. Toward a reinforcement learning based framework for learning cognitive empathy in human-robot interactions[C]//Proceedings of the 2020 Workshop on Social Human-Robot Interaction of Human-Care Service Robots, 2020. [47] SHEN L, ZHANG J C, OU J, et al. Constructing emotional consensus and utilizing unpaired data for empathetic dialogue generation[C]//Findings of the Association for Computational Linguistics, 2021: 3124-3134. [48] ZENG C K, CHEN G Y, LIN C H, et al. Affective decoding for empathetic response generation[C]//Proceedings of the 14th International Conference on Natural Language Generation, 2021: 331-340. [49] SHIN J, XU P, MADOTTO A, et al. Generating empathetic responses by looking ahead the user’s sentiment[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 7989-7993. [50] YOUNG T, CAMBRIA E, CHATURVEDI I, et al. Augmenting end-to-end dialogue systems with commonsense knowledge[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018. [51] WU S X, LI Y, ZHANG D W, et al. Diverse and informative dialogue generation with context-specific commonsense knowledge awareness[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 5811-5820. [52] CAI H, SHEN X L, XU Q, et al. Improving empathetic dialogue generation by dynamically infusing commonsense knowledge[C]//Findings of the Association for Computational Linguistics, 2023: 7858-7873. [53] ZHONG P X, ZHANG C, WANG H, et al. Towards persona-based empathetic conversational models[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 6556-6566. [54] NATARAJAN B, NARGUND A. MRE: multi relationship extractor for persona based empathetic conversational model[C]//Proceedings of the 18th International Conference on Natural Language Processing, 2021: 173-179. [55] XU X C, GOU Z B, WU W Q, et al. Long time no see! open-domain conversation with long-term persona memory[C]//Findings of the Association for Computational Linguistics, 2022: 2639-2650. [56] LI Y P, HU Y, SUN Y J, et al. Learning to know myself: a coarse-to-fine persona-aware training framework for personalized dialogue generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 13157-13165. [57] R?DL S. Self-conciousness[M]. Cambridge: Harvard University Press, 2007. [58] HUANG Z J, LIU P S, DE MELO G, et al. Generating persona-aware empathetic responses with retrieval-augmented prompt learning[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, 2024: 12441-12445. [59] SABOUR S, ZHENG C J, HUANG M L. CEM: commonsense-aware empathetic response generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 11229-11237. [60] ZHOU J F, ZHENG C J, WANG B, et al. CASE: aligning coarse-to-fine cognition and affection for empathetic response generation[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, 2023: 8223-8237. [61] ZHENG C J, LIU Y, CHEN W, et al. CoMAE: a multi-factor hierarchical framework for empathetic response generation[C]//Findings of the Association for Computational Linguistics, 2021: 813-824. [62] SU Y, BIAN H R, FAN B Z, et al. RLCA: reinforcement learning model integrating cognition and affection for empathetic response generation[J]. IEEE Transactions on Computational Social Systems, 2024, 11(1): 1158-1168. [63] QIAN Y S, WANG B, LIN T E, et al. Empathetic response generation via emotion cause transition graph[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, 2023: 1-5. [64] LEE Y J, LIM C G, CHOI H J. Does GPT-3 generate empathetic dialogues? a novel in-context example selection method and automatic evaluation metric for empathetic dialogue generation[C]//Proceedings of the International Conference on Computational Linguistics, 2022. [65] QIAN Y S, ZHANG W N, LIU T. Harnessing the power of large language models for empathetic response generation: empirical investigations and improvements[C]//Findings of the Association for Computational Linguistics, 2023: 6516-6528. [66] YANG Z, REN Z C, WANG Y F, et al. Enhancing empathetic response generation by augmenting LLMs with small-scale empathetic models[J]. arXiv: 2402.11801, 2024. [67] SUN L Z, DONG Y, XU N, et al. Rational sensibility: llm enhanced empathetic response generation guided by self-presentation theory[J]. arXiv:2312.08702, 2023. [68] GOTTLIEB B H. Social networks and social support: an overview of research, practice, and policy implications[J]. Health Education Quarterly, 1985, 12(1): 5-22. [69] RAINS S A, PAVLICH C A, LUTOVSKY B, et al. Support seeker expectations, support message quality, and supportive interaction processes and outcomes: the case of the comforting computer program revisited[J]. Journal of Social and Personal Relationships, 2020, 37(2): 647-666. [70] LIU S Y, ZHENG C J, DEMASI O, et al. Towards emotional support dialog systems[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 3469-3483. [71] PENG W, HU Y, XING L X, et al. Control globally, understand locally: a global-to-local hierarchical graph network for emotional support conversation[J]. arXiv:2204.12749, 2022. [72] LUBIS N, SAKTI S, YOSHINO K, et al. Positive emotion elicitation in chat-based dialogue systems[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(4): 866-877. [73] ZHAO W X, ZHAO Y Y, WANG S L, et al. TransESC: smoothing emotional support conversation via turn-level state transition[C]//Findings of the Association for Computational Linguistics, 2023: 6725-6739. [74] HUANG Y C, GAMBORINO E, HUANG Y J, et al. Inferring stressors from conversation: towards an emotional support robot companion[J]. International Journal of Social Robotics, 2022, 14(7): 1657-1671. [75] TU Q, LI Y R, CUI J W, et al. MISC: a mixed strategy-aware model integrating COMET for emotional support conversation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022: 308-319. [76] CHENG Y, LIU W G, LI W J, et al. Improving multi-turn emotional support dialogue generation with lookahead strategy planning[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022: 3014-3026. [77] PENG W, QIN Z Y, HU Y, et al. FADO: feedback-aware double controlling network for emotional support conversation[J]. Knowledge-Based Systems, 2023, 264: 110340. [78] LI G, WU M Y, WANG C S, et al. DQ-HGAN: a heterogeneous graph attention network based deep Q-learning for emotional support conversation generation[J]. Knowledge-Based Systems, 2024, 283: 111201. [79] LI J, PENG B, HSU Y Y. Emstremo: adapting emotional support response with enhanced emotion-strategy integrated selection[C]//Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, 2024: 5794-5805. [80] PORIA S, HAZARIKA D, MAJUMDER N, et al. MELD: a multimodal multi-party dataset for emotion recognition in conversations[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 527-536. [81] BUSSO C, BULUT M, LEE C C, et al. IEMOCAP: interactive emotional dyadic motion capture database[J]. Language Resources and Evaluation, 2008, 42(4): 335-359. [82] ZAHIRI S M, CHOI J D. Emotion detection on TV show transcripts with sequence-based convolutional neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018. [83] CHEN Y, FAN W, XING X, et al. CPED: a large-scale Chinese personalized and emotional dialogue dataset for conversational AI[J]. arXiv:2205.14727, 2022. [84] LI Y, SU H, SHEN X, et al. DailyDialog: a manually labelled multi-turn dialogue dataset[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing, 2017: 986-995. [85] CHRISTOPHE C, SOMAYEH J, ADEDAYO O, et al. Multi-task dialog act and sentiment recognition on Mastodon[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 745-754. [86] CHEN S Y, HSU C C, KUO C C, et al. EmotionLines: an emotion corpus of multi-party conversations[J]. arXiv:1802. 08379, 2018. [87] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. |
| [1] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
| [2] | LI Kaiwei, MA Li. Emotional Dialogue Response Generation Based on Generative Adversarial Network [J]. Computer Engineering and Applications, 2022, 58(18): 130-136. |
| [3] | CHEN Mo, GUO Lei. Analysis of importance of audio signals in multimedia emotion tagging [J]. Computer Engineering and Applications, 2018, 54(9): 1-4. |
| [4] | ZHU Sa-sa,PENG Li,WANG Wei. Research of artificial emotion evolutionary model and learning algorithm [J]. Computer Engineering and Applications, 2008, 44(32): 45-47. |
| [5] | CHENG Bo1,LIU Guang-yuan2. Emotion recognition based on wavelet packet entropy of surface EMG signal [J]. Computer Engineering and Applications, 2008, 44(26): 214-216. |
| [6] | CHENG Bo1,LIU Guang-yuan2. Emotion recognition of surface EMG signal based on wavelet transform [J]. Computer Engineering and Applications, 2007, 43(35): 216-218. |
| [7] | . An Artificial Emotion Model Based on the psychology energy Idea [J]. Computer Engineering and Applications, 2007, 43(3): 1-1. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||