[1] QIN Y, JIN L, ZHANG A, et al. Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-12.
[2] KARAMI H, EHTERAM M, MOUSAVI S F, et al. Optimization of energy management and conversion in the water systems based on evolutionary algorithms[J]. Neural Computing and Applications, 2019, 31(10): 5951-5964.
[3] LI J, LEI Y, YANG S. Mid-long term load forecasting model based on support vector machine optimized by improved sparrow search algorithm[J]. Energy Reports, 2022, 8: 491-497.
[4] XUE J, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[5] 董奕含, 喻志超, 胡天跃, 等. 基于改进蜣螂优化算法的瑞雷波频散曲线反演方法[J]. 油气地质与采收率, 2023, 30(4): 86-97.
DONG Y H, YU Z C, HU T Y, et al. Inversion of Rayleigh wave dispersion curve based on improved dung beetle optimizer algorithm[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 86-97.
[6] 周亚中, 何怡刚, 邢致恺, 等. 基于IDBO-ARIMA的电力变压器振动信号预测[J]. 电子测量与仪器学报, 2023, 37(8): 11-20.
ZHOU Y, HE Y, XING Z, et al. Power transformer vibration signal prediction based on IDBO-ARIMA[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(8) : 11-20.
[7] LI Y, SUN K, YAO Q, et al. A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm[J]. Energy, 2024, 286: 129604.
[8] ZHANG R, ZHU Y. Predicting the mechanical properties of heat-treated woods using optimization-algorithm-based BPNN[J]. Forests, 2023, 14(5): 935.
[9] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22): 92-110.
PAN J C, LI S B, ZHOU P, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110.
[10] ZHU F, LI G, TANG H, et al. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems[J]. Expert Systems with Applications, 2024, 236: 121219.
[11] DUAN J, GONG Y, LUO J, et al. Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer[J]. Scientific Reports, 2023, 13(1): 12127.
[12] 隋东, 杨振宇, 丁松滨, 等. 基于EMSDBO算法的无人机三维航迹规划[J]. 系统工程与电子技术, 2024, 46(5): 1756-1766.
SUI D, YANG Z Y, DING S B, et al. Three-dimensional path planning of UAV based on EMSDBO algorithm[J]. Systems Engineering and Electronics, 2024, 46(5): 1756-1766.
[13] HE Y, WANG W, LI M, et al. A short-term wind power prediction approach based on an improved dung beetle optimizer algorithm, variational modal decomposition, and deep learning[J]. Computers and Electrical Engineering, 2024, 116: 109182.
[14] WOLP ERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.
[15] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23: 715-734.
[16] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[17] Y?LD?Z A R. A new design optimization framework based on immune algorithm and Taguchi’s method[J]. Computers in Industry, 2009, 60(8): 613-620.
[18] EBERHART R C, SHI Y. Guest editorial special issue on particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 201-203.
[19] CHOPRA N, ANASAI M M. Golden jackal optimization: a novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198: 116924.
[20] HASHIM F A, HUSSIEN A G. Snake optimizer: a novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242: 108320.
[21] SEYYEDABBASI A, KIANI F. Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39(4): 2627-2651.
[22] 朱杰, 付伟, 马宁, 等. 一种多种群进化和差分变异的鲸鱼优化算法[J/OL]. 小型微型计算机系统: 1-11(2024-03-21)[2024-05-12]. http://kns.cnki.net/kcms/detail/21.1106.tp. 20240319.1010.004. html.
ZHU J, FU W, MA N, et al. Whale optimization algorithm with muti-population evolution and differential mutation[J/OL]. Journal of Chinese Computer Systems: 1-11(2024-03-21)[2024-05-12]. http://kns.cnki.net/kcms/detail/21.1106. tp.20240319.1010.004.html.
[23] WILCOXON F. Individual comparisons by ranking methods[J]. Springer in Statistics, Breakthroughs in Statistics, 2011: 196-202.
[24] 陈雪芬, 叶春明. 基于非线性收敛因子和标杆管理的改进教与学优化算法[J]. 上海理工大学学报, 2022, 44(5): 508-518.
CHEN X F, YE C M. Modified teaching- learning-based optimization algorithm based on the nonlinear convergence factor and benchmarking management[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(5): 508-518.
[25] 陈心怡, 张孟健, 王德光. 基于Fuch映射的改进白鲸优化算法及应用[J]. 计算机工程与科学,2024, 46(8): 1482-1492.
CHEN X Y, ZHANG M J, WANG D G. Improved beluga whale optimization algorithm based on Fuch mapping and applications[J]. Computer Engineering & Science,2024, 46(8): 1482-1492.
[26] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 42(2): 513-529.
[27] 王闻浩, 许亮. 改进SO优化KELM的液体火箭发动机故障检测[J]. 航天控制, 2023, 41(4): 84-90.
WANG W H, XU L. Improved SO and optimized KELM for liquid rocket engine fault detection[J]. Aerospace Control, 2023, 41(4): 84-90.
[28] 张彬桥, 舒勇, 江雨. 基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断[J]. 计算机集成制造系统, 2024, 30(4): 1408-1421.
ZHANG B Q, SHU Y, JIANG Y. Bearing fault diagnosis based on improved variational mode decomposition and optimized stacked denoising autoencoder[J]. Computer Integrated Manufacturing Systems, 2024, 30(4): 1408-1421. |