[1] TAN S F, ISA N A M. Exposure based multi-histogram equalization contrast enhancement for non?uniform illumination images[J]. IEEE Access, 2019, 7: 70842-70861.
[2] PARIHAR A S, VERMA O P. Contrast enhancement using entropy?based dynamic sub?histogram equalisation[J]. IET Image Processing, 2016, 10(11): 799-808.
[3] LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841.
[4] YANG J Y, XU Y W, YUE H J, et al. Low?light image enhancement based on Retinex decomposition and adaptive gamma correction[J]. IET Image Processing, 2021, 15(5): 1189-1202.
[5] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[6] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.
[7] LV F, LU F, WU J, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//Proceedings of the British Machine Vision Conference, 2018: 220-228.
[8] ZHANG Y H, ZHANG J W, GUO X J. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 1632-1640.
[9] JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
[10] GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 1780-1789.
[11] ZHENG S, GUPTA G. Semantic-guided zero-shot learning for low-light image/video enhancement[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2022: 581-590.
[12] WANG Y F, WAN R J, YANG W H, et al. Low-light image enhancement with normalizing flow[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 2604-2612.
[13] WU W H, WENG J, ZHANG P P, et al. Uretinex-Net: retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 5901-5910.
[14] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE International Conference on Computer Vision, 2021: 10012-10022.
[15] WANG Z D, CUN X D, BAO J M, et al. Uformer: a general u-shaped transformer for image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 17683-17693.
[16] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 5728-5739.
[17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[18] CUI Z T, LI K C, GU L, et al. You only need 90K parameters to adapt light: a light weight transformer for image enhancement and exposure correction[C]//Proceedings of the British Machine Vision Conference, 2022.
[19] HAN Q H, FAN Z J, DAI Q, et al. On the connection between local attention and dynamic depth-wise convolution[J]. arXiv:2106.04263, 2021.
[20] LI K C, WANG Y L, ZHANG J H, et al. Uniformer: unifying convolution and self-attention for visual recognition[J]. arXiv:2201.09450, 2022.
[21] WANG T, ZHANG K H, SHEN T R, et al. Ultra-high-definition low?light image enhancement: a benchmark and transformer?based method[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 2654-2662.
[22] CAI Y H, BIAN H, LIN J, et al. Retinexformer: one-stage retinex-based transformer for low-light image enhancement[J]. arXiv:2303.06705, 2023.
[23] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 60-65.
[24] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising with block-matching and 3D filtering[C]//Proceedings of the Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, 2006: 354-365.
[25] AZAD R, ARIMOND R, AGHDAM E K, et al. DAE-Former: dual attention-guided efficient transformer for medical image segmentation[C]//Proceedings of the International Workshop on Predictive Intelligence In Medicine, 2023: 83-95.
[26] SHEN Z S, ZHANG M Y, ZHAO H Y, et al. Efficient attention: attention with linear complexities[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2021: 3531-3539.
[27] LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep laplacian pyramid networks[C]//Proceedings of the British Machine Vision Conference, 2018: 2599-2613.
[28] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[29] YANG W H, WANG W J, HUANG H F, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072-2086.
[30] WEI C, WANG W J, YANG W H, et al. Deep retinex decomposition for low?light enhancement[J]. arXiv:1808. 04560, 2018.
[31] CHEN C, CHEN Q F, XU J, et al. Learning to see in the dark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3291-3300.
[32] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[33] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 586-595.
[34] GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.
[35] MA L, MA T Y, LIU R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5637-5646.
[36] LIU R S, MA L, ZHANG J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10561-10570.
[37] XU X G, WANG R X, FU C W, et al. SNR-aware low-light image enhancement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 17714-17724. |