Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (6): 349-360.DOI: 10.3778/j.issn.1002-8331.2311-0109

• Engineering and Applications • Previous Articles     Next Articles

Accident Detection Method Integrating Progressive Domain Adaptation and Cross-Attention

ZHANG Qi, ZHOU Wei, HU Weichao, YU Pengcheng   

  1. 1.Road Traffic Safety Research Center of the Ministry of Public Security, Beijing 100062, China
    2.School of Transportation, Southeast University, Nanjing 211189, China
  • Online:2025-03-15 Published:2025-03-14

融合递进式域适应和交叉注意力的事故检测方法

张奇,周威,胡伟超,于鹏程   

  1. 1.公安部道路交通安全研究中心,北京 100062
    2.东南大学 交通学院,南京 211189

Abstract: Road traffic accidents are one of the major causes of property damage, casualties, and traffic congestion. Rapid and accurate detection of accidents is crucial for improving emergency response speed and reducing the fatality rate. In recent years, vision?based accident detection methods have become the mainstream, achieving significant progress through the application of deep learning techniques. However, existing methods suffer from low accuracy in domestic surveillance scenes due to significant domain shift between the open-source training data and domestic surveillance accident video data. To avoid the laborious task of constructing and annotating a large-scale domestic surveillance accident dataset, this paper proposes a domain adaptation dual-stream network that fully utilizes existing open-source accident datasets to achieve road accident detection in domestic surveillance scenes. Specifically, this paper develops a coarse-to-fine progressive domain adaptation training approach to guide the model in capturing domain-invariant accident appearance features. After that, a cross-attention fusion network is employed to establish correlations and interactions between appearance and motion features, alleviating feature discrepancies caused by scene variations. Experimental results demonstrate that the proposed method achieves high detection performance in domestic surveillance scenes, validating its effectiveness and reliability. This research is expected to provide important technical support for enhancing public safety and improving traffic efficiency.

Key words: intelligent transportation, computer vision, accident detection, domain adaptation dual-stream network

摘要: 道路交通事故是导致财产损失、人员伤亡和交通拥堵的主要原因之一。快速准确地检测事故对于提高应急救援速度和降低人员伤亡率至关重要。近年来,基于视觉的事故检测方法成为主流,且随深度学习技术的应用取得了显著进展。然而,现有方法应用于国内监控场景时存在精度不高的问题,主要原因是用于模型训练的开源数据与国内监控事故视频数据间存在较大的域偏移。为了避免重新构建并标注一个大型国内监控事故数据集的繁琐性,提出了一种域适应双流网络,充分利用现有开源事故数据集实现面向国内监控场景的道路事故检测。具体地提出了一种“由粗到细”递进式域适应方法,指导模型以捕捉域不变事故外观特征。构建交叉注意力融合网络实现外观特征和运动特征的关联与交互,缓解因场景差异导致的特征偏差问题。实验结果表明,所提方法在国内监控场景下取得了较高的检测性能,验证了其有效性和可靠性。有望为提升人民生命安全和交通效率提供了重要的技术支持。

关键词: 智能交通, 计算机视觉, 事故检测, 域适应双流网络