Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (6): 349-360.DOI: 10.3778/j.issn.1002-8331.2311-0109
• Engineering and Applications • Previous Articles Next Articles
ZHANG Qi, ZHOU Wei, HU Weichao, YU Pengcheng
Online:
2025-03-15
Published:
2025-03-14
张奇,周威,胡伟超,于鹏程
ZHANG Qi, ZHOU Wei, HU Weichao, YU Pengcheng. Accident Detection Method Integrating Progressive Domain Adaptation and Cross-Attention[J]. Computer Engineering and Applications, 2025, 61(6): 349-360.
张奇, 周威, 胡伟超, 于鹏程. 融合递进式域适应和交叉注意力的事故检测方法[J]. 计算机工程与应用, 2025, 61(6): 349-360.
[1] 李海涛, 李志慧, 王鑫, 等. 基于时间卷积自编码网络的实时交通事件自动检测方法[J]. 中国公路学报, 2022, 35(6): 265-276. LI H T, LI Z H, WANG X, et al. Real-time automatic method of detecting traffic incidents based on temporal convolutional autoencoder network[J]. China Journal of Highway and Transport, 2022, 35(6): 265-276. [2] 王晨, 周威, 严隽逸, 等. 一种用于道路交通事故自动检测的改进双流网络[J]. 中国公路学报, 2023, 36(5): 185-196. WANG C, ZHOU W, YAN J Y, et al. Improved two-stream network for vision-based traffic accident detection[J]. China Journal of Highway and Transport, 2023, 36(5): 185-196. [3] 王晨, 周威, 章世祥. 一种特征融合的视频事故快速检测方法[J]. 交通运输工程与信息学报, 2022, 20(1): 31-38. WANG C, ZHOU W, ZHANG S X. A feature fusion deep learning framework for video-based crash detection systems[J]. Journal of Transportation Engineering and Information, 2022, 20(1): 31-38. [4] 拜佩, 李金屏. 一种基于视频的交通事故检测方法[J]. 济南大学学报 (自然科学版), 2012, 26(3): 282-286. BAI P, LI J P. A video-based method of traffic accident detection[J]. Journal of University of Jinan (Science and Technology), 2012, 26(3): 282-286. [5] SADEK S, AL-HAMADI A, MICHAELIS B, et al. Real-time automatic traffic accident recognition using HFG[C]//Proceedings of the 20th International Conference on Pattern Recognition, 2010: 3348-3351. [6] IJJINA E P, CHAND D, GUPT S, et al. Computer vision-based accident detection in traffic surveillance[C]//Proceedings of the International Conference on Computing, Communication and Networking Technologies, 2019: 1-6. [7] MAALOUL B, TALEB-AHMED A, NIAR S, et al. Adaptive video-based algorithm for accident detection on highways[C]//Proceedings of the IEEE International Symposium on Industrial Embedded Systems, 2017: 1-6. [8] ARCEDA V M, RIVEROS E L. Fast car crash detection in video[C]//Proceedings of the 2018 XLIV Latin American Computer Conference (CLEI), 2018: 632-637. [9] 陈斌, 金炜东. 四类交通事故检测算法的分析[J]. 交通科技与经济, 2005(3): 50-52. CHEN B, JIN W D. Analysis of four category accident detection algorithms[J]. Technology and Economy in Areas of Communication, 2005(3): 50-52. [10] LU Z, ZHOU W, HANG S, et al. A new video-based crash detection method: balancing speed and accuracy using a feature fusion deep learning framework[J]. Journal of Advanced Transportation, 2020(8): 8848874. [11] WANG C, DAI Y L, ZHOU W, et al. A vision-based video crash detection framework for mixed traffic flow environment considering low-visibility condition[J]. Journal of Advanced Transportation, 2020(1): 9194028. [12] HUANG X, HE P, RANGARAJAN A, et al. Intelligent intersection: two-stream convolutional networks for real-time near accident detection in traffic video[J]. ACM Transactions on Spatial Algorithms and Systems, 2019, 6(2): 1-28. [13] BATANINA E, BEKKOUCH I, YOUSSRY Y, et al. Domain adaptation for car accident detection in videos[C]//Proceedings of the 2019 Ninth International Conference on Image Processing Theory, Tools and Applications, 2019: 1-6. [14] SINGH D, MOHAN C K. Deep spatio-temporal representation for detection of road accidents using stacked autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 879-887. [15] LUO W, WEN L, GAO S. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo, 2017: 439-444. [16] DOSHI K, YILMAZ Y. Online anomaly detection in surveillance videos with asymptotic bounds on false alarm rate[J]. Pattern Recognition, 2021, 114(2): 107865. [17] SHAH A P, LAMARE J B, NGUYEN-ANH T, et al. CADP: a novel dataset for CCTV traffic camera based accident analysis[C]//Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2018: 1-9. [18] WANG M, DENG W. Deep visual domain adaptation: a survey[J]. Neurocomputing, 2018, 312: 135-153. [19] KI Y K, LEE D Y. A traffic accident recording and reporting model at intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2): 188-194. [20] ZHONG J X, LI N, KONG W, et al. Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1237-1246. [21] FENG J C, HONG F T, ZHENG W S. Mist: multiple instance self-training framework for video anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14009-14018. [22] LUO W, LIU W, GAO S. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), 2017: 439-444. [23] LEE S, KIM H G, RO Y M. STAN: spatio-temporal adversarial networks for abnormal event detection[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018: 1323-1327. [24] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1705-1714. [25] WANG X, CHE Z, JIANG B, et al. Robust unsupervised video anomaly detection by multipath frame prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2301-2312. [26] DOSHI K, YILMAZ Y. Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate[J]. Pattern Recognition, 2021, 114: 107865. [27] ZHOU W, WEN L, ZHAN Y, et al. An appearance-motion network for vision-based crash detection: improving the accuracy in congested traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. [28] SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6479-6488. [29] LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6536-6545. [30] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [31] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the International Conference on Machine Learning, 2015: 1180-1189. [32] KANG G, JIANG L, YANG Y, et al. Contrastive adaptation network for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4893-4902. [33] 赵鹏飞, 李艳玲, 林民. 结合胶囊网络的领域适应意图识别[J]. 计算机工程与应用, 2021, 57(21): 188-194. ZHAO P F, LI Y L, LIN M, et al. Intent detection of domain adaptation combined with capsule network[J]. Computer Engineering and Applications, 2021, 57(21): 188-194. [34] 刘华玲, 皮常鹏, 赵晨宇,等. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. LIU H L, PI C P, ZHAO C Y, et al. Review of cross-domain object detection algorithms based on depth domain adaptation[J]. Computer Engineering and Applications, 2023, 59(8): 1-12. [35] 赵雪冰, 王俊杰. 基于改进DeeplabV3+和迁移学习的桥梁裂缝检测[J]. 计算机工程与应用, 2023, 59(5): 262-269. ZHAO X B, WANG J J. Bridge crack detection based on improved DeeplabV3+ and migration learning[J]. Computer Engineering and Applications, 2023, 59(5): 262-269. [36] CHEN C F R, FAN Q, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 357-366. [37] WANG L, XIONG Y, WANG Z, et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(11): 2740-2755. [38] KIM H, LEE K, HWANG G, et al. Crash to not crash: learn to identify dangerous vehicles using a simulator[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 978-985. [39] LIN J, GAN C, HAN S. TSM: temporal shift module for efficient video understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7083-7093. [40] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6299-6308. [41] HAJRI F, FRADI H. Vision transformers for road accident detection from dashboard cameras[C]//Proceedings of the 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2022: 1-8. [42] KARIM M M, LI Y, QIN R, et al. A dynamic spatial-temporal attention network for early anticipation of traffic accidents[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9590-9600. [43] HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. |
[1] | HONG Shuying, ZHANG Donglin. Survey on Lane Line Detection Techniques for Classifying Semantic Information Processing Modalities [J]. Computer Engineering and Applications, 2025, 61(5): 1-17. |
[2] | ZHAO Shangfei, DU Wenju. Fundamental Diagram and Stability Analysis for Complex Mixed Traffic Flow Considering Multiclass Time-Delay [J]. Computer Engineering and Applications, 2025, 61(3): 336-348. |
[3] | CHEN Shanjing, LI Zhen, WANG Zhenggang, LIU Ningbo, HE Yun. Remote Sensing Extraction Method for Typical Features of Traditional Residential Buildings in Xizang [J]. Computer Engineering and Applications, 2025, 61(3): 349-358. |
[4] | HU Xiangkun, LI Hua, FENG Yixiong, QIAN Songrong, LI Jian, LI Shaobo. Research Advance of Crack Detection for Infrastructure Surfaces Based on Deep Learning [J]. Computer Engineering and Applications, 2025, 61(1): 1-23. |
[5] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[6] | LI Houjun, WEI Boquan. Attribute Distillation for Zero-Shot Recognition [J]. Computer Engineering and Applications, 2024, 60(9): 219-227. |
[7] | SHEN Haiyun, HUANG Zhongyi, WANG Haichuan, YU Honghao. Improved Tracktor-Based Pedestrian Multi-Objective Tracking Algorithm [J]. Computer Engineering and Applications, 2024, 60(8): 242-249. |
[8] | HE Yuting, CHE Jin, WU Jinman, MA Pengsen. Research on Pedestrian Multi-Object Tracking Algorithm Under OMC Framework [J]. Computer Engineering and Applications, 2024, 60(5): 172-182. |
[9] | WANG Rong, DUANMU Chunjiang. Multi-Coupled Feedback Networks for Image Fusion and Super-Resolution Methods [J]. Computer Engineering and Applications, 2024, 60(5): 210-220. |
[10] | ZHU Kai, LI Li, ZHANG Tong, JIANG Sheng, BIE Yiming. Survey of Vision Transformer in Low-Level Computer Vision [J]. Computer Engineering and Applications, 2024, 60(4): 39-56. |
[11] | TIAN Miaomiao, ZHI Lijia, ZHANG Shaomin, CHAO Daifu. Review of Deep Learning Methods Applied to Medical CT Super-Resolution [J]. Computer Engineering and Applications, 2024, 60(3): 44-60. |
[12] | JING Chao, WU Yuanyuan, XIE Tianqi, SUN Weiheng. Review on Emotion Recognition in Crowds and Groups [J]. Computer Engineering and Applications, 2024, 60(23): 49-61. |
[13] | XIAO Yuqing, LUO Liang, YU Boxiang, YANG Zhiyuan, HAO Liandong, AI Junpeng. Review of Computer Vision for Marine Environmental Perception [J]. Computer Engineering and Applications, 2024, 60(23): 62-78. |
[14] | CHEN Wenxiang, TIAN Qichuan, LIAN Lu, ZHANG Xiaohang, WANG Haoji. Research Progress of Image Inpainting Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(22): 58-73. |
[15] | LIANG Chao, WANG Yangping, WANG Wenrun. Small-Scale Hand Detection Method in Complex Backgrounds Based on Parallel Mixed Attention Mechanism [J]. Computer Engineering and Applications, 2024, 60(22): 209-218. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||