[1] 於学松. 量子计算在智能金融发展中的应用前景分析[J]. 国际金融, 2020(2): 35-41.
YU X S. Prospects of quantum computing in the development of intelligent finance[J]. International Finance, 2020(2): 35-41.
[2] 朱钦圣, 杨世璐, 刘恒宇, 等. 量子机器学习简介及其在特定场景中的应用[J]. 大学物理, 2023, 42(8): 27-31.
ZHU Q S, YANG S L, LIU H Y, et al. Introduction of quantummachine learning and its application in a certain scenario[J]. University Physics, 2023, 42(8): 27-31.
[3] HARWOOD S, GAMBELLA C, TRENEV D, et al. Formulating and solving routing problems on quantum computers[J]. IEEE Transactions on Quantum Engineering, 2021, 2: 1-17.
[4] 李震宇, 刘杰, 沈祥建, 等. 量子计算化学的挑战和机遇[J]. 中国科学: 化学, 2023, 53(2): 119-128.
LI Z Y, LIU J, SHEN X J, et al. Challenges and opportunities of quantum-computational chemistry[J]. Science in China: Chemistry, 2023, 53(2): 119-128.
[5] NIU S, SUAU A, STAFFELBACH G, et al. A hardware-aware heuristic for the qubit mapping problem in the NISQ era[J]. IEEE Transactions on Quantum Engineering, 2020, 1: 1-14.
[6] TANNU S S, QURESHI M K. A case for variability-aware policies for NISQ-era quantum computers[J]. arXiv:1805. 10224, 2018.
[7] LI S, NGUYEN K D, CLARE Z, et al. Single-qubit gates matter for optimising quantum circuit depth in qubit mapping[J]. arXiv:2308.00876, 2023.
[8] ZULEHNER A, PALER A, WILLE R. An efficient methodology for mapping quantum circuits to the IBM QX architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 38(7): 1226-1236.
[9] LI G, DING Y, XIE Y. Tackling the qubit mapping problem for NISQ-era quantum devices[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, 2019: 1001-1014.
[10] LI S, ZHOU X, FENG Y. Qubit mapping based on subgraph isomorphism and filtered depth-limited search[J]. IEEE Transactions on Computers, 2020, 70(11): 1777-1788.
[11] ZHOU X, LI S, FENG Y. Quantum circuit transformation based on simulated annealing and heuristic search[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 4683-4694.
[12] ZHOU X, FENG Y, LI S. A Monte Carlo tree search framework for quantum circuit transformation[C]//Proceedings of the 39th International Conference on Computer-Aided Design, 2020: 1-7.
[13] DOUSTI M J, SHAFAEI A, PEDRAM M. Squash: a scalable quantum mapper considering ancilla sharing[C]//Proceedings of the 24th Edition of the Great Lakes Symposium on VLSI, 2014: 117-122.
[14] BOOTH K, DO M, BECK J, et al. Comparing and integrating constraint programming and temporal planning for quantum circuit compilation[C]//Proceedings of the International Conference on Automated Planning and Scheduling, 2018, 28: 366-374.
[15] BAHREINI T, MOHAMMADZADEH N. An MINLP model for scheduling and placement of quantum circuits with a heuristic solution approach[J]. ACM Journal on Emerging Technologies in Computing Systems, 2015, 12(3): 1-20.
[16] COTTA C, FERNáNDEZ A J. Memetic algorithms in planning, scheduling, and timetabling[M]//Evolutionary scheduling. Heidelberg: Springer, 2007: 1-30.
[17] GU X, KOCKUM A F, MIRANOWICZ A, et al. Microwave photonics with superconducting quantum circuits[J]. Physics Reports, 2017, 718: 1-102.
[18] RASCONI R, ODDI A. An innovative genetic algorithm for the quantum circuit compilation problem[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 7707-7714.
[19] LAO L, VAN WEE B, ASHRAF I, et al. Mapping of lattice surgery-based quantum circuits on surface code architectures[J]. Quantum Science and Technology, 2018, 4(1): 015005.
[20] LAO L, BROWNE D E. 2QAN: a quantum compiler for 2-local qubit hamiltonian simulation algorithms[C]//Proceedings of the 49th Annual International Symposium on Computer Architecture, 2022: 351-365. |