[1] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. arXiv:1506.01497, 2015.
[2] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[3] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[4] LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1792-1800.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] KALWAR S, PATEL D, AANEGOLA A, et al. GDIP: gated differentiable image processing for object-detection in adverse conditions[J]. arXiv:2209.14922, 2022.
[7] SASAGAWA Y, NAGAHARA H. YOLO in the dark-domain adaptation method for merging multiple models[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 345-359.
[8] JIANG Q, MAO Y, CONG R, et al. Unsupervised decomposition and correction network for low-light image enhancement[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19440-19455.
[9] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision, 2020: 213-229.
[10] LIU R, MA L, MA T, et al. Learning with nested scene modeling and cooperative architecture search for low-light vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 5953-5969.
[11] HONG Y, WEI K, CHEN L, et al. Crafting object detection in very low light[C]//Proceedings of the 32nd British Machine Vision Conference, 2021.
[12] ZHANG H, HAO K, PEDRYCZ W, et al. Vision transformer with convolutions architecture search[J]. arXiv:2203.10435, 2022.
[13] CUI Z, QI G J, GU L, et al. Multitask AET with orthogonal tangent regularity for dark object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2553-2562.
[14] 麦锦文, 李浩, 康雁. 基于特征交互结构的弱光目标检测[J/OL]. 计算机工程与应用(2023-04-03)[2023-08-04]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230403.1553.022.html.
MAI J W, LI H, KANG Y. Low-light object detection based on feature interaction structure[J/OL]. Computer Engineering and Applications(2023-04-03)[2023-08-04]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230403.1553.022. html.
[15] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[16] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[J]. arXiv:2209.07947, 2022.
[17] XU X, JIANG Y, CHEN W, et al. DAMO-YOLO: a report on real-time object detection design[J]. arXiv:2211.15444, 2022.
[18] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[19] 涂成凤, 易安林, 姚涛, 等. 轻量化YOLOv5n的高精度垃圾检测算法[J]. 计算机工程与应用, 2023, 59(10): 187-195.
TU C F, YI A L, YAO T, et al. High-precision garbage detection algorithm of lightweight YOLOv5n[J]. Computer Engineering and Applications, 2023, 59(10): 187-195.
[20] YU G, CHANG Q, LV W, et al. PP-PicoDet: a better real-time object detector on mobile devices[J]. arXiv:2111.00902, 2021.
[21] 刘昕宇, 姜长泓, 王其铭, 等. 基于SDP图像和MobilenetV2的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2023, 588(2): 178-182.
LIU X Y, JIANG C H, WANG Q M, et al. Fault diagnosis of rolling bearing based on SDP lmage and MobileNetV2[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023, 588(2): 178-182.
[22] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[23] JIANG Y, TAN Z, WANG J, et al. GiraffeDet: a heavy-neck paradigm for object detection[J]. arXiv:2202.04256, 2022.
[24] LOH Y P, CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42.
[25] ZHU B, WANG J, JIANG Z, et al. Autoassign: differentiable label assignment for dense object detection[J]. arXiv:2007.
03496, 2020.
[26] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[27] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. |