[1] MOZAFFARI S, AL-JARRAH O Y, DIANATI M, et al. Deep learning-based vehicle behavior prediction for autonomous driving applications: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(1): 33-47.
[2] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514.
[3] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[10] ZHAO L, LI S. Object detection algorithm based on improved YOLOv3[J]. Electronics, 2020, 9(3): 9030537.
[11] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[12] YU J, ZHANG W. Face mask wearing detection algorithm based on improved YOLOv4[J]. Sensors, 2021, 21(9): 3263.
[13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[14] 杨国亮, 杨浩, 余帅英, 等. 改进YOLOv5的交通标志检测算法[J]. 计算机工程与应用, 2023, 59(10): 262-269.
YANG G L, YANG H, YU S Y, et al. Improved traffic sign detection algorithm for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(10): 262-269.
[15] 戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程, 2023, 49(1): 41-48.
QI L L, GAO J L. Small object detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1): 41-48.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object dete-ctors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[17] 赵元龙, 单玉刚, 袁杰. 改进YOLOv7与DEEPSORT 的佩戴口罩行人跟踪[J]. 计算机工程与应用, 2023, 59(6): 221-230.
ZHAO Y L, SHAN Y G, YUAN J. Wearing mask pedestrian tracking based on improved YOLOv7 and DeepSORT[J]. Computer Engineering and Applications, 2023, 59(6): 221-230.
[18] ZHU L, WANG X, KE Z, et al. Biformer: vision transformer with bi-level routing aten-tion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[19] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[20] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[21] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[22] LIANG S, WU H, ZHEN L, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360.
[23] LIU J, CAI Q, ZOU F, et al. BiGA-YOLO: a lightweight object detection network based on yolov5 for autonomous driving[J]. Electronics, 2023, 12(12): 2745.
[24] 宋绍剑, 夏海姐, 李刚. YOLOv5的改进算法及其在自动驾驶多目标检测的应用研究[J]. 计算机工程与应用, 2023, 59(15): 68-75.
SONG S J, XIA H J, LI G. Research on improved YOLOv5 algorithm and its application in multi-object detection for automatic driving[J]. Computer Engineering and Applications, 2023, 59(15): 68-75. |