[1] 易灵芝, 林佳豪, 刘建康, 等. 改进自适应MOEA/D算法的楼宇负荷优化调度[J]. 计算机工程与应用, 2022, 58(2): 295-302.
YI L Z, LIN J H, LIU J K, et al. Improved adaptive MOEA/D algorithm for building load optimization scheduling[J]. Computer Engineering and Applications, 2022, 58(2): 295-302.
[2] 顾清华, 骆家乐, 李学现. 基于小生境的多目标进化算法[J]. 计算机工程与应用, 2023, 59(1): 126-139.
GU Q H, LUO J L, LI X X. Evolutionary algorithm based on niche for multi-objective optimization[J]. Computer Engineering and Applications, 2023, 59(1): 126-139.
[3] 安宇欣, 王转. 配送中心多区并行拣货系统投产顺序优化研究[J]. 计算机工程与应用, 2023, 59(7): 328-336.
AN Y X, WANG Z. Research on optimization of production sequence of multi-district parallel picking system in distribution center[J]. Computer Engineering and Applications, 2023, 59(7): 328-336.
[4] SHEN J, WANG P, WANG X. A controlled strengthened dominance relation for evolutionary many-objective optimization[J]. IEEE Transactions on Cybernetics, 2020, 52(5): 3645-3657.
[5] ZHU S, XU L, GOODMAN E D, et al. A new many-objective evolutionary algorithm based on generalized Pareto dominance[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 7776-7790.
[6] ZHOU Y, LI S, PEDRYCZ W, et al. ACDB-EA: adaptive convergence-diversity balanced evolutionary algorithm for many-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 75: 101145.
[7] CHEN G, LI J. A diversity ranking based evolutionary algorithm for multi-objective and many-objective optimization[J]. Swarm and Evolutionary Computation, 2019, 48: 274-287.
[8] BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1): 45-76.
[9] SUN Y, YEN G G, YI Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 173-187.
[10] ZITZLER E, THIELE L. Multiobjective optimization using evolutionary algorithms—a comparative case study[C]//International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 1998: 292-301.
[11] COELLO COELLO C A, REYES SIERRA M. A study of the parallelization of a convolutionary multi-objective evolutionary algorithm[C]//Proceedings of the Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004. Berlin, Heidelberg: Springer, 2004: 688-697.
[12] LIU Q, ZOU J, YANG S, et al. A multiobjective evolutionary algorithm based on decision variable classification for many-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 73: 101108.
[13] LI J, WANG P, DONG H, et al. A two-stage surrogate-assisted evolutionary algorithm (TS-SAEA) for expensive multi/many-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 73: 101107.
[14] WANG H, JIAO L, YAO X. Two_Arch2: an improved two-archive algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(4): 524-541.
[15] ZHANG Q, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[16] CHENG R, JIN Y, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.
[17] SAXENA D K, DEB K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding[C]//International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2007: 772-787.
[18] LIU S, LIN Q, WONG K C, et al. A self-guided reference vector strategy for many-objective optimization[J]. IEEE Transactions on Cybernetics, 2020, 52(2): 1164-1178.
[19] ZHAO C, ZHOU Y, HAO Y. Decomposition-based evolutionary algorithm with dual adjustments for many-objective optimization problems[J]. Swarm and Evolutionary Computation, 2022, 75: 101168.
[20] ZHANG C, TAN K C, LEE L H, et al. Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts[J]. Soft Computing, 2018, 22: 3997-4012.
[21] LIU Y, GONG D, SUN J, et al. A many-objective evolutionary algorithm using a one-by-one selection strategy[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2689-2702.
[22] HARDIN D P, SAFF E B. Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds[J]. Advances in Mathematics, 2005, 193(1): 174-204.
[23] AGGARWAL C C, HINNEBURG A, KEIM D A. On the surprising behavior of distance metrics in high dimensional space[C]//Proceedings of the 8th International Conference on Database Theory, London, UK, January 4-6, 2001. Berlin, Heidelberg: Springer, 2001: 420-434.
[24] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]//Evolutionary multiobjective optimization: theoretical advances and applications. London: Springer, 2005: 105-145.
[25] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506.
[26] CHENG R, LI M, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3: 67-81.
[27] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 602-622.
[28] ZHANG X, TIAN Y, JIN Y. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(6): 761-776.
[29] XIANG Y, ZHOU Y, LI M, et al. A vector angle-based evolutionary algorithm for unconstrained many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(1): 131-152.
[30] DEB K, SINDHYA K, OKABE T. Self-adaptive simulated binary crossover for real-parameter optimization[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, 2007: 1187-1194.
[31] DEB K, GOYAL M. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1996, 26: 30-45.
[32] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[33] MAO Z, LIU M. A local search-based many-objective five-element cycle optimization algorithm[J]. Swarm and Evolutionary Computation, 2022, 68: 101009.
[34] LIAO X, LI Q, YANG X, et al. Multiobjective optimization for crash safety design of vehicles using stepwise regression model[J]. Structural and Multidisciplinary Optimization, 2008, 35: 561-569. |