Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (9): 159-171.DOI: 10.3778/j.issn.1002-8331.2307-0381
• Theory, Research and Development • Previous Articles Next Articles
CAO Jiale, YANG Lei, TIAN Jinglin, LI Huade, LI Kangshun
Online:
2024-05-01
Published:
2024-04-29
曹嘉乐,杨磊,田井林,李华德,李康顺
CAO Jiale, YANG Lei, TIAN Jinglin, LI Huade, LI Kangshun. Dual-Stage Dual-Population Evolutionary Algorithm for Many-Objective Optimization[J]. Computer Engineering and Applications, 2024, 60(9): 159-171.
曹嘉乐, 杨磊, 田井林, 李华德, 李康顺. 面向高维多目标优化的双阶段双种群进化算法[J]. 计算机工程与应用, 2024, 60(9): 159-171.
[1] 易灵芝, 林佳豪, 刘建康, 等. 改进自适应MOEA/D算法的楼宇负荷优化调度[J]. 计算机工程与应用, 2022, 58(2): 295-302. YI L Z, LIN J H, LIU J K, et al. Improved adaptive MOEA/D algorithm for building load optimization scheduling[J]. Computer Engineering and Applications, 2022, 58(2): 295-302. [2] 顾清华, 骆家乐, 李学现. 基于小生境的多目标进化算法[J]. 计算机工程与应用, 2023, 59(1): 126-139. GU Q H, LUO J L, LI X X. Evolutionary algorithm based on niche for multi-objective optimization[J]. Computer Engineering and Applications, 2023, 59(1): 126-139. [3] 安宇欣, 王转. 配送中心多区并行拣货系统投产顺序优化研究[J]. 计算机工程与应用, 2023, 59(7): 328-336. AN Y X, WANG Z. Research on optimization of production sequence of multi-district parallel picking system in distribution center[J]. Computer Engineering and Applications, 2023, 59(7): 328-336. [4] SHEN J, WANG P, WANG X. A controlled strengthened dominance relation for evolutionary many-objective optimization[J]. IEEE Transactions on Cybernetics, 2020, 52(5): 3645-3657. [5] ZHU S, XU L, GOODMAN E D, et al. A new many-objective evolutionary algorithm based on generalized Pareto dominance[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 7776-7790. [6] ZHOU Y, LI S, PEDRYCZ W, et al. ACDB-EA: adaptive convergence-diversity balanced evolutionary algorithm for many-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 75: 101145. [7] CHEN G, LI J. A diversity ranking based evolutionary algorithm for multi-objective and many-objective optimization[J]. Swarm and Evolutionary Computation, 2019, 48: 274-287. [8] BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1): 45-76. [9] SUN Y, YEN G G, YI Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 173-187. [10] ZITZLER E, THIELE L. Multiobjective optimization using evolutionary algorithms—a comparative case study[C]//International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 1998: 292-301. [11] COELLO COELLO C A, REYES SIERRA M. A study of the parallelization of a convolutionary multi-objective evolutionary algorithm[C]//Proceedings of the Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004. Berlin, Heidelberg: Springer, 2004: 688-697. [12] LIU Q, ZOU J, YANG S, et al. A multiobjective evolutionary algorithm based on decision variable classification for many-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 73: 101108. [13] LI J, WANG P, DONG H, et al. A two-stage surrogate-assisted evolutionary algorithm (TS-SAEA) for expensive multi/many-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 73: 101107. [14] WANG H, JIAO L, YAO X. Two_Arch2: an improved two-archive algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(4): 524-541. [15] ZHANG Q, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. [16] CHENG R, JIN Y, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. [17] SAXENA D K, DEB K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding[C]//International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2007: 772-787. [18] LIU S, LIN Q, WONG K C, et al. A self-guided reference vector strategy for many-objective optimization[J]. IEEE Transactions on Cybernetics, 2020, 52(2): 1164-1178. [19] ZHAO C, ZHOU Y, HAO Y. Decomposition-based evolutionary algorithm with dual adjustments for many-objective optimization problems[J]. Swarm and Evolutionary Computation, 2022, 75: 101168. [20] ZHANG C, TAN K C, LEE L H, et al. Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts[J]. Soft Computing, 2018, 22: 3997-4012. [21] LIU Y, GONG D, SUN J, et al. A many-objective evolutionary algorithm using a one-by-one selection strategy[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2689-2702. [22] HARDIN D P, SAFF E B. Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds[J]. Advances in Mathematics, 2005, 193(1): 174-204. [23] AGGARWAL C C, HINNEBURG A, KEIM D A. On the surprising behavior of distance metrics in high dimensional space[C]//Proceedings of the 8th International Conference on Database Theory, London, UK, January 4-6, 2001. Berlin, Heidelberg: Springer, 2001: 420-434. [24] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]//Evolutionary multiobjective optimization: theoretical advances and applications. London: Springer, 2005: 105-145. [25] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. [26] CHENG R, LI M, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3: 67-81. [27] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 602-622. [28] ZHANG X, TIAN Y, JIN Y. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(6): 761-776. [29] XIANG Y, ZHOU Y, LI M, et al. A vector angle-based evolutionary algorithm for unconstrained many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(1): 131-152. [30] DEB K, SINDHYA K, OKABE T. Self-adaptive simulated binary crossover for real-parameter optimization[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, 2007: 1187-1194. [31] DEB K, GOYAL M. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1996, 26: 30-45. [32] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. [33] MAO Z, LIU M. A local search-based many-objective five-element cycle optimization algorithm[J]. Swarm and Evolutionary Computation, 2022, 68: 101009. [34] LIAO X, LI Q, YANG X, et al. Multiobjective optimization for crash safety design of vehicles using stepwise regression model[J]. Structural and Multidisciplinary Optimization, 2008, 35: 561-569. |
[1] | CHEN Feng, DING Quan, WU Le, LIU Aiping, CHEN Xun, ZHANG Yunfei. Hybrid Driven Particle Swarm Algorithm [J]. Computer Engineering and Applications, 2024, 60(8): 78-89. |
[2] | GU Qinghua, LIU Sihan, WANG Qian, LUO Jiale, LIU Di. Expensive High-Dimensional Optimization Algorithm with Three-Stage Adaptive Sampling and Incremental Kriging Assistance [J]. Computer Engineering and Applications, 2024, 60(5): 76-87. |
[3] | GENG Huantong, ZHOU Zhengli, SHEN Junye, SONG Feifei. Research onTwo-Stage Search Strategy for Constrained Many-Objective Optimization [J]. Computer Engineering and Applications, 2023, 59(7): 80-91. |
[4] | ZHANG Mengting, DU Jianqiang, LUO Jigen, NIE Bin, XIONG Wangping, LIU Ming, ZHAO Shuhan. Research on Feature Selection of Multi-Objective Optimization [J]. Computer Engineering and Applications, 2023, 59(3): 23-32. |
[5] | GU Qinghua, LUO Jiale, LI Xuexian. Evolutionary Algorithm Based on Niche for Multi-Objective Optimization [J]. Computer Engineering and Applications, 2023, 59(1): 126-139. |
[6] | QIAN Zhengyuan, ZENG Guosun. Differential Evolution Algorithm Guided by Elite Island Population [J]. Computer Engineering and Applications, 2021, 57(20): 73-81. |
[7] | WU Tianwei, AN Siguang, SUN Qiqu, LI Mei, SUN Lihong, SHENTU Nanying. Improved Aggregation-Tree-Based Objective Reduction Optimization for Many-Objective Optimization [J]. Computer Engineering and Applications, 2020, 56(21): 47-53. |
[8] | JI Xunsheng, CAI Yiqing. Solving Multi-Objective FJSP Using Historical Information and Restriction Operator [J]. Computer Engineering and Applications, 2020, 56(2): 272-278. |
[9] | CAI Yanguang, CHEN Houren, QI Yuanhang. Variable Neighborhood Quantum Fireworks Algorithm for Solving CVRP [J]. Computer Engineering and Applications, 2019, 55(9): 230-236. |
[10] | ZHOU Lin. Integrated Optimization Research on Vehicle Routing and Scheduling in City Logistics with Time-Dependent and CO2 Emissions Considerations [J]. Computer Engineering and Applications, 2019, 55(8): 264-270. |
[11] | GENG Huantong, ZHOU Lifa, DING Yangyang, ZHOU Shansheng. Improved MOEA/D Algorithm Based on New Differential Evolution Model [J]. Computer Engineering and Applications, 2019, 55(8): 138-146. |
[12] | XIAO Junming, GAO Hongyang, ZHU Yongsheng, QU Boyang. Multi-Objective Power Dispatching Considering New Energy Access [J]. Computer Engineering and Applications, 2019, 55(23): 241-247. |
[13] | WANG Huijiao, QIU Zan, JIANG Hua. Clustering Algorithm Based on Evolutionary Game for Wireless Sensor Network [J]. Computer Engineering and Applications, 2019, 55(12): 97-102. |
[14] | DENG Ye, ZHU Wanhong, WANG Fengshan, LIU Huali. Research on Multi-Objective Robust Vehicle Routing Problem in Emergency Logistics [J]. Computer Engineering and Applications, 2019, 55(1): 248-255. |
[15] | HU Min, WANG Tengfei, HUANG Hongcheng. Software-defined wireless sensor networks routing algorithm based on extremum disturbed particle swarm optimization [J]. Computer Engineering and Applications, 2018, 54(22): 113-118. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 99
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||