[1] 张伟光, 钟靖涛, 呼延菊, 等. 基于 VGG16-UNet语义分割模型的路面龟裂形态提取与量化研究[J]. 交通运输工程学报, 2023, 23(2): 166-182.
ZHANG W G, ZHONG J T, HUYAN J, et al. Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182.
[2] FAN Z, LI C, CHEN Y, et al. Automatic crack detection on road pavements using encoder-decoder architecture[J]. Materials, 2020, 13(13): 2960.
[3] YAN M D, BAO S B, XU K, et al. Pavement crack detection and analysis for high-grade highway[C]//Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, Xi’an, China, 2007.
[4] OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//Proceedings of the European Signal Processing Conference, Glasgow, UK, 2009: 622-626.
[5] ZHAO H L, QIN G F, WANG X J. Improvement of canny algorithm based on pavement edge detection[C]//Proceedings of the 2010 3rd International Congress on Image and Signal Processing (CISP), Yantai, China, 2010: 964-967.
[6] ATTOH-OKINE N, AYENU-PRAH A. Evaluating pavement cracks with bidimensional empirical mode decomposition[J]. Eurasip Journal on Advances in Signal Processing, 2008: 1-7.
[7] YAN Y D, ZHU S J, MA S L, et al. CycleADC-Net: a crack segmentation method based on multi-scale feature fusion[J]. Measurement, 2022, 204.
[8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[9] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015.
[10] LIU Z Q, CAO Y W, WANG Y Z, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139.
[11] 汪家宝, 牟怿. 基于混合损失ResNet34-UNet的路面裂缝分割方法[J]. 武汉轻工大学学报, 2022, 41(6): 71-75.
WANG J B, MOU Y. Research on pavement cracks segmentation method based on mixed loss ResNet34-UNet[J]. Journal of Wuhan Polytechnic University, 2022, 41(6): 71-75.
[12] 惠冰, 李远见. 基于改进U型神经网络的路面裂缝检测方法[J]. 交通信息与安全, 2023, 41(1): 105-114.
HUI B, LI Y J. A detection method for pavement cracks based on an improved U-shaped network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114.
[13] 曹锦纲, 杨国田, 杨锡运. 基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333.
CAO J G, YANG G T, YANG X Y. Pavement crack detection with deep learning based on attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(8): 1324-1333.
[14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. arXiv:1512.03385, 2015.
[15] EVERINGHAM M, ESLAMI S M, GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111: 98-136.
[16] 陈立, 魏钰欣, 刘斌. 基于生成对抗网络与ResUNet的细胞核图像分割[J]. 光电子·激光, 2023, 34(5): 473-481.
CHEN L, WEI Y X, LIU B. Cell nucleus image segmentation based on generative adversarial network and ResUNet[J]. Journal of Optoelectronics·Laser, 2023, 34(5): 473-481.
[17] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018.
[18] CHENG L X, LO L Y, TANG N L S, et al. CrossNorm: a novel normalization strategy for microarray data in cancers[J]. Scientific Reports, 2016, 6(1).
[19] GU Z, CHENG J, FU H. et al, CE-Net: context encoder network for 2D medical image segmentation[J] IEEE Transactions on Medical Imaging, 2019, 38: 2281-2292.
[20] TANG Z Q, GAO Y H, ZHU Y, et al. CrossNorm and SelfNorm for generalization under distribution shifts[C]//Proceedings of the IEEE International Conference on Computer Vision, 2021: 52-61.
[21] WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[22] LIU M H, INWHEE J. A detail-retained pyramid scene parsing network for semantic segmentation[C]//Proceedings of Symposium of the Korean Telecommunications Society, 2019.
[23] DA CRUZ L B, JUNIOR D A D, DINIZ J O B, et al. Kidney tumor segmentation from computed tomography images using DeepLabV3+2.5D model[J]. Expert Systems with Applications, 2022, 192: 116270.
[24] SUN Y, BI F K, GAO Y T, et al. A multi-attention UNet for semantic segmentation in remote sensing images[J]. Symmetry, 2022, 14(5): 906.
[25] YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535. |