[1] KRIAN B R, SOBH I, TALPAER V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 4909-4926.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005: 886-893.
[3] ZHAO W L, NGO C W. Flip-invariant SIFT for copy and object detection[J]. IEEE Transactions on Image Processing, 2012, 22(3): 980-991.
[4] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.
[5] TENG Z, ZHANG B, KIM O, et al. Regional SVM classifiers with a spatial model for object detection[C]//2014 International Conference on Computer Vision Theory and Applications (VISAPP), 2014: 372-379.
[6] MA J, PAN Q, HU J, et al. Small object detection with random decision forests[C]//2017 IEEE International Conference on Unmanned Systems (ICUS), 2017: 566-571.
[7] DING J, ZHANG J, ZHAN Z, et al. A precision efficient method for collapsed building detection in post-earthquake UAV images based on the improved NMS algorithm and faster R-CNN[J]. Remote Sensing, 2022, 14(3): 663.
[8] 张婷, 张兴忠, 王慧民, 等. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336.
ZHANG T, ZHANG X Z, WANG H M, et al. 3D object detection in substation scene based on graph neural network[J]. Computer Engineering and Applications, 2023, 59(9): 329-336.
[9] 王鹏, 王玉林, 焦博文. 基于雾天复杂场景下的道路目标检测研究[J]. 青岛大学 (工程技术版), 2023, 38(2): 37-45.
WANG P, WANG Y L, JIAO B W. Research on road object detection based on complex scenarios in foggy weather[J]. Journal of Qingdao University (Engineering & Technology Edition), 2023, 38(2): 37-45.
[10] 张诗慧, 罗晖, 裴莹玲, 等. 基于改进RetinaNet的高铁无砟轨道板表面裂缝检测[J]. 计算机工程与应用, 2023, 59(6): 310-317.
ZHANG S H, LUO, H, PEI Y L, et al. Surface crack detection in ballastless slab track of high-speed railway based on improved RetinaNet[J]. Computer Engineering and Applications, 2023, 59(6): 310-317.
[11] 王鹏, 王玉林, 焦博文, 等. 基于YOLOv5的道路目标检测算法研究[J]. 计算机工程与应用, 2023, 59(1): 117-125.
WANG P, WANG Y L, JIAO B W, et al. Research on road target detection algorithm based on YOLOv5[J]. Computer Engineering and Applications, 2023, 59(1): 117-125.
[12] XIE S, GIRSHICK R, DOLLA P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
[13] ZHU Q Q, LIU S, GUO W M. Research on vehicle appearance component recognition based on mask R-CNN[C]//2019 3rd International Conference on Computer Graphics and Digital Image Processing (CGDIP 2019), Rome, Italy, 25-27 July 2019.
[14] ZHANG Y, ZHUO L, MA C, et al. Abnormal object detection in x-ray images with self-normalizing channel attention and efficient data augmentation[C]//International Workshop on Advanced Imaging Technology (IWAIT2022), 2022: 108-112.
[15] LI H, CHENG J Z, CHOU Y H, et al. AttentionNet: learning where to focus via attention mechanism for anatomical segmentation of whole breast ultrasound images[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019: 1078-1081.
[16] ZENG N Y, WU P S, WANG Z D, et al. A small-sized object detection oriented multi-scale feature fusion approach with application to defect detction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.
[17] LI S S, LI Y J, LI Y, et al. YOLO-FIRI: improved YOLOv5 for infrared image object detection[J]. IEEE Access, 2021 99: 1.
[18] LENG J X, REN Y H, JIANG W, et al. Realize your surroundings: exploiting context information for small object detection[J]. Neurocomputing, 2021, 433(8).
[19] YAN D, LI G, LI X, et al. An improved faster R-CNN method to detect tailings ponds from high-resolution remote sensing images[J]. Remote Sensing, 2021, 13(11): 2052.
[20] LIN T Y, DOLLA P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[21] FAN B B, YANG H. Multi-scale traffic sign detection model with attention[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2/3): 708-720.
[22] YU H, CHENG X, LI Z, et al. Disease recognition of apple leaf using lightweight multi-scale network with ECANet[J]. CMES-Computer Modeling in Engineering & Sciences, 2022, 132(3).
[23] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[25] CUI Y, XU Y, PENG R, et al. Layer normalization for TSK fuzzy system optimization in regression problems[J]. IEEE Transactions on Fuzzy Systems, 2022, 31(1): 254-264.
[26] KUMAR S, CHOUDHARY M, KUMARI K, et al. Intelligent driving system at opencast mines during foggy weather[J]. International Journal of Mining Reclamation and Environment, 2022, 36(3): 196-217. |