[1] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6-43.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448.
[3] REN S Q, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] HAN J M, DING J, XUE N, et al. REDet: a rotation-equivariant detector for aerial object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2786-2795.
[5] XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 3520-3529.
[6] LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[7] YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, 2021: 3163-3171.
[8] HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
[9] GLENN J. YOLOv5 releases v6.1[EB/OL]. (2022-02-07)[2023-05-25]. https://github.com/ultralytics/yolov5/releases/tag/v6.1.
[10] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[11] WANG C, BOCHKOVSKIY A, LIAO M H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[12] LYU C, ZHANG W W, HUANG H A, et al. RTMDet: an empirical study of designing real-time object detectors[J]. arXiv:2212.07784, 2022.
[13] 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4): 927-937.
ZHAO P F, XIE L B, PENG L. Deep small object detection algorithm integrating attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937.
[14] ZHAO H Y, ZHANG H P, ZHAO Y Y. YOLOv7-sea: object detection of maritime UAV images based on improved YOLOv7[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 233-238.
[15] 刘涛, 丁雪妍, 张冰冰, 等. 改进YOLOv5的遥感图像检测方法[J]. 计算机工程与应用, 2023, 59(10): 253-261.
LIU T, DING X Y, ZHANG B B, et al. Improved YOLOv5 for remote sensing image detection[J]. Computer Engineering and Applications, 2023, 59(10): 253-261.
[16] LI X J, CHEN L, WANG D Y, et al. Detection of ship targets in remote sensing image based on improved YOLOv5[C]//Proceedings of the 2022 International Conference on Electronic Information Engineering and Computer Science, 2022.
[17] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[18] LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[19] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[20] GHIASI G, LIN T, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7036-7045.
[21] YANG L X, ZHANG R, LI L D, et al. Simam: a simple, parameter-free attention module for convolutional neural- networks[C]//Proceedings of the 2021 International Conference on Machine Learning, 2021: 11863-11874.
[22] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2024, 18(2): 345-362.
QI X H, ZHI M. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362.
[23] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision, 2018: 3-19.
[24] DING X H, ZHANG X Y, HAN J G, et al. Scaling up your kernels to 31x31: revisiting large kernel design in CNNs[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11963-11975.
[25] WOO S, DEBNATH S, HU R H, et al. ConvNeXt v2: codesigning and scaling convnets with masked autoencoders[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 16133-16142.
[26] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 618-626.
[27] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the 2022 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022: 443-459.
[28] SAJJADI M S M, VEMULAPALLI R, BROWN M. Frame-recurrent video super-resolution[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6626-6634.
[29] YANG X, YAN J C, MING Q, et al. Rethinking rotated object detection with gaussian wasserstein distance loss[C]//Proceedings of the 2021 International Conference on Machine Learning, 2021: 11830-11841.
[30] YANG X, YANG X J, YANG J R, et al. Learning high-precision bounding box for rotated object detection via Kullback-Leibler divergence[C]//Proceedings of the 2021 Advances in Neural Information Processing Systems, 2021: 18381-18394.
[31] YANG X, ZHOU Y, ZHANG G F, et al. The KFIoU loss for rotated object detection[J]. arXiv:2201.12558, 2022.
[32] 徐从安, 苏航, 李健伟, 等. RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11(4): 581-599.
XU C A, SU H, LI J W, et al. RSDD-SAR: rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11(4): 581-599. |