[1] CHEN K, ZHANG J, LIU J, et al. Semantic visual simultaneous localization and mapping: a survey[J]. arXiv:2209.06428, 2022.
[2] 高贵, 伍宣衡, 王忠美, 等. V-SLAM深度学习闭环检测研究进展与展望[J]. 计算机工程与应用, 2022, 58(11): 47-59.
GAO G, WU X H, WANG Z M, et al. Research progress and prospect of V-SLAM deep learning loop closure detection[J]. Computer Engineering and Applications, 2022, 58(11): 47-59.
[3] QIN T, LI P, SHEN S. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.
[4] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[5] CAMPOS C, ELVIRA R, RODRíGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890.
[6] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60: 91-110.
[7] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 International Conference on Computer Vision, 2011: 2564-2571.
[8] OLIVA A, TORRALBA A. Building the gist of a scene: the role of global image features in recognition[J]. Progress in Brain Research, 2006, 155: 23-36.
[9] LI J, MEGER D, DUDEK G. Semantic mapping for view-invariant relocalization[C]//Proceedings of the 2019 International Conference on Robotics and Automation, 2019: 7108-7115.
[10] YANG S, SCHERER S. CubeSLAM: monocular 3-D object SLAM[J]. IEEE Transactions on Robotics, 2019, 35(4): 925-938.
[11] HAN X, YANG L. SQ-SLAM: monocular semantic SLAM based on superquadric object representation[J]. arXiv:2209.
10817, 2022.
[12] SHAN M, FENG Q, ATANASOV N. OrcVIO: object residual constrained visual-inertial odometry[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 5104-5111.
[13] LI J, KOREITEM K, MEGER D, et al. View-invariant loop closure with oriented semantic landmarks[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation, 2020: 7943-7949.
[14] XU K, WANG C, CHEN C, et al. AirCode: a robust object encoding method[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1816-1823.
[15] KIM J J Y, URSCHLER M, RIDDLE P J, et al. Closing the loop: graph networks to unify semantic objects and visual features for multi-object scenes[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022: 4352-4358.
[16] GAWEL A, DEL DON C, SIEGWART R, et al. X-view: graph-based semantic multi-view localization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1687-1694.
[17] LIU Y, PETILLOT Y, LANE D, et al. Global localization with object-level semantics and topology[C]//Proceedings of the 2019 International Conference on Robotics and Automation, 2019: 4909-4915.
[18] GUO X, HU J, CHEN J, et al. Semantic histogram based graph matching for real-time multi-robot global localization in large scale environment[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8349-8356.
[19] ZHOU B, MENG Y, KAI F. Object-based loop closure with directional histogram descriptor[C]//Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering, 2022: 1346-1351.
[20] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[21] NICHOLSON L, MILFORD M, SüNDERHAUF N. QuadricSLAM: dual quadrics from object detections as landmarks in object-oriented SLAM[J]. IEEE Robotics and Automation Letters, 2018, 4(1): 1-8.
[22] WU Y, ZHANG Y, ZHU D, et al. EAO-SLAM: monocular semi-dense object SLAM based on ensemble data association[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 4966-4973.
[23] HARIRI S, KIND M C, BRUNNER R J. Extended isolation forest[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(4): 1479-1489.
[24] 尤波, 徐义飞, 李彬, 等. 基于轮廓信息与颜色直方图的图像匹配[J]. 自动化技术与应用, 2019, 38(2): 145-150.
YOU B, XU Y F, LI B, et al. Image matching based on contour Information and color histogram[J]. Techniques of Automation and Applications, 2019, 38(2): 145-150.
[25] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012: 573-580.
[26] LIN S, WANG J, XU M, et al. Topology aware object-level semantic mapping towards more robust loop closure[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7041-7048. |