[1] YANG S C, CAO Y G, PENG Z X, et al. Distributed formation control of nonholonomic autonomous vehicle via RBF neural network[J]. Mechanical Systems and Signal Processing, 2017, 87(2): 81-95.
[2] HE S D, XU R R, ZHAO Z J, et al. Vision-based neural formation tracking control of multiple autonomous vehicles with visibility and performance constraints[J]. Neurocomputing, 2022, 492: 651-663.
[3] CHEN H Z, YAN H C, WANG Y Y, et al. Reinforcement learning-based close formation control for underactuated surface vehicle with prescribed performance and time-varying state constraints[J]. Ocean Engineering, 2022, 256: 142-155.
[4] YAN Y, ZHAO X T, YU S H. Barrier function-based adaptive neural network sliding mode control of autonomous surface vehicles[J]. Ocean Engineering, 2021, 238: 684-693.
[5] PEDRO C, PEDRO B, AMIT S. Design and analysis of attitude observers based on the Lagrange-d’Alembert principle applied to constrained three-vehicle formations[J]. Advances in Space Research, 2022, 69(11): 4001-4012.
[6] LIU A Q, LI T, GU Y, et al. Cooperative extended state observer based control of vehicle platoons with arbitrarily small time headway[J]. Automatica, 2021, 129: 3124-3133.
[7] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110.
[8] BASIN M. Finite-time and fixed-time convergent algorithms: design and convergence time estimation[J]. Annual Reviews in Control, 2019, 48: 209-221.
[9] 赵玮, 任凤丽. 基于牵制控制的多智能体系统的有限时间与固定时间一致性[J]. 应用数学和力学, 2021, 42(3): 299-307.
ZHAO W, REN F L. Finite-time and fixed-time consensus for multi-agent systems via pinning control[J]. Applied Mathematics and Mechanics, 2021, 42(3): 299-307.
[10] 马俊达, 谭冲, 刘可. 欠驱动无人船非奇异固定时间鲁棒包容控制[J]. 控制与决策, 2023, 132(4): 1-9.
MA J D, TAN C, LIU K. Nonsingular fixed-time robust containment control for underactued unmanned surface vehicle[J]. Control and Decision, 2023, 132(4): 1-9.
[11] 叶帅, 蒋国平, 周映江, 等. 基于事件触发的多无人机固定时间编队控制[J]. 系统仿真学报, 2021, 33(10): 2420-2431.
YE S, JIANG G P, ZHOU Y J, et al. Fixed-time event-triggered formation control for multiple UAVs[J]. Journal of System Simulation, 2021, 33(10): 2420-2431.
[12] WANG H, LI H Y, FENG Y X, et al. Fixed-time coordinated guidance for containment maneuvering of unmanned surface vehicles under delayed communications: theory and experiment[J]. Ocean Engineering, 2023, 277: 145-154.
[13] 郭戈, 张茜, 高振宇. 具有预设瞬稳态性能的有限时间智能车辆固定构型编队控制[J]. 中国公路学报, 2022, 35(3): 28-42.
GUO G, ZHANG Q, GAO Z Y. Finite-time fixed configuration formation control of intelligent vehicles with prescribed transient and steady-state performance[J]. China Journal of Highway and Transport, 2022, 35(3): 28-42.
[14] 余明裕, 李仲昆, 王泊桦. 基于固定时间扰动观测器的水面无人艇精确编队控制[J]. 控制与决策, 2023, 38(2): 379-387.
YU M Y, LI Z K, WANG B H. Fixed-time disturbance observer-based accurate formation control of unmanned surface vehicles[J]. Control and Decision, 2023, 38(2): 379-387.
[15] DIXON W E, DAWSON D M, ZERGEROGLU E, et al. Nonlinear control of wheeled mobile robots[M]. London: Springer, 2001.
[16] PING X, PEDRYCZ W. Output feedback model predictive control of interval type-2 TS fuzzy system with bounded disturbance[J]. IEEE Transactions on Fuzzy Systems, 2019, 28(1): 148-162.
[17] GUO G, LI D. Adaptive sliding mode control of vehicular platoons with prescribed tracking performance[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7511-7520.
[18] LIU J, ZHANG Y, SUN C, et al. Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control[J]. Information Sciences, 2019, 480(2): 261-272.
[19] WANG F, CHEN B, LIN C, et al. Adaptive neural network finite-time output feedback control of quantized nonlinear systems[J]. IEEE Transactions on Cybernetics, 2018, 48(6): 1839-1848.
[20] ZOU A M, RUITER A H, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016, 126(7): 46-53.
[21] CAI X, QUEIROZ M. Adaptive rigidity-based formation control for multi-robotic vehicles with dynamics[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1): 389-396. |