Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (20): 320-327.DOI: 10.3778/j.issn.1002-8331.2306-0258

• Engineering and Applications • Previous Articles     Next Articles

Fixed-Time Based on Perturbation Observer Vehicle Formation Control

ZHANG Yihao, YE Hongtao, LUO Wenguang, WEN Jiayan   

  1. 1.School of Automation, Guangxi University of Science and Technology, Liuzhou, Guangxi 545616, China
    2.Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
    3.Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
  • Online:2024-10-15 Published:2024-10-15

基于扰动观测器的固定时间车辆编队控制

张意豪,叶洪涛,罗文广,文家燕   

  1. 1.广西科技大学 自动化学院,广西 柳州 545616
    2.广西自动检测技术与仪器重点实验室(桂林电子科技大学),广西 桂林 541004
    3.广西汽车零部件与整车技术重点实验室(广西科技大学),广西 柳州 545006

Abstract: Considering the influence of external natural environment and internal model parameter uncertainty on intelligent unmanned vehicles during actual driving, which weakens the control effect on vehicle formation systems, a formation control algorithm with disturbance observer is proposed. Firstly, vehicle dynamics and kinematics models are used for modeling, and disturbance observer is introduced to enable the system to accurately identify the composite disturbance. Secondly, the fixed-time theory is used to design the controller for the following vehicle, and the Lyapunov stability theory is used to prove that both controllers can converge within a fixed-time range. Furthermore, it is demonstrated that the entire vehicle formation control system can converge within a fixed-time range. Finally, the effectiveness of the proposed disturbance observer based fixed-time vehicle formation controller is verified through simulation. The simulation results show that the proposed controller can converge the vehicle formation quickly within a fixed-time, and the system convergence time is independent of the initial state of the system.

Key words: vehicle formation, cooperative control, fixed-time, formation control, leader-follower

摘要: 考虑智能无人车在实际行驶中会受到外部自然环境及内部自身模型参数不确定的影响,使得对车辆编队系统的控制效果减弱,为此提出了一种具有扰动观测器的编队控制算法。使用车辆动力学和运动学模型进行建模,同时引入扰动观测器,可以让系统对复合扰动进行精确辨识。采用固定时间理论设计跟随车的控制器,运用李雅普诺夫稳定性理论分别证明了两个控制器都能在固定时间内收敛,并接着证明了整个车辆编队控制系统都能在一个固定的时间范围内收敛。通过仿真验证所提出的基于扰动观测器的固定时间车辆编队控制器的有效性。仿真结果表明,所提出的控制器可以使车辆编队在固定时间内快速收敛,且系统收敛时间与系统初始状态无关。

关键词: 车辆编队, 协同控制, 固定时间, 编队控制, 领航跟随法