Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (1): 28-39.DOI: 10.3778/j.issn.1002-8331.2305-0291
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Shuangli, HUANG Xueli, LIU Lei, XIE Yu, ZHANG Jinbao, YANG Jiangnan
Online:
2024-01-01
Published:
2024-01-01
刘爽利,黄雪莉,刘磊,谢宇,张锦宝,杨江楠
LIU Shuangli, HUANG Xueli, LIU Lei, XIE Yu, ZHANG Jinbao, YANG Jiangnan. Infrared and Visible Image Fusion Under Photoelectric Loads[J]. Computer Engineering and Applications, 2024, 60(1): 28-39.
刘爽利, 黄雪莉, 刘磊, 谢宇, 张锦宝, 杨江楠. 光电载荷下的红外和可见光图像融合综述[J]. 计算机工程与应用, 2024, 60(1): 28-39.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2305-0291
[1] 李扬, 杨海涛, 孔卓, 等.像素级红外与可见光图像融合方法综述[J].计算机工程与应用, 2022, 58(14): 40-50. LI Y, YANG H T, KONG Z, et al. Review of pixel-level infrared and visible image fusion methods[J].Computer Engineering and Applications, 2022, 58(14): 40-50. [2] 安晓东, 李亚丽, 王芳.汽车驾驶辅助系统红外与可见光融合算法综述[J].计算机工程与应用, 2022, 58(19): 64-75. AN X D, LI Y L, WANG F. Overview of infrared and visible image fusion algorithms for automotive driving assistance system[J].Computer Engineering and Applications, 2022, 58(19): 64-75. [3] 李霖, 王红梅, 李辰凯.红外与可见光图像深度学习融合方法综述[J].红外与激光工程, 2022, 51(12): 337-356. LI L, WANG H M, LI C K.A review of deep learning fusion methods for infrared and visible images[J].Infrared and Laser Engineering, 2022, 51(12): 337-356. [4] LING H, YAHUI H, SONG H, et al. Artificial intelligence technology in battlefield situation awareness[J].E3S Web of Conferences, 2022, 360: 1-6. [5] 沈宏海, 黄猛, 李嘉全, 等.国外先进航空光电载荷的进展与关键技术分析[J].中国光学, 2012, 5(1): 20-29. SHEN H H, HUANG M, LI J Q, et al. Recent progress in aerial electro-optic payloads and their key technologies[J].Chinese Optics, 2012, 5(1): 20-29. [6] 左羽佳. 机载光电平台红外与可见光图像融合系统关键技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2017. ZUO Y J. Research on key technologies of infrared and visible image fusion system of airborne photoelectric platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017. [7] CHEN J, DING J, YU Y, et al. THFuse: an infrared and visible image fusion network using transformer and hybrid feature extractor[J]. Neurocomputing, 2023, 527: 71-82. [8] PANIGRAHY C, SEAL A, GONZALO-MARTíN C, et al. Parameter adaptive unit-linking pulse coupled neural network based MRI-PET/SPECT image fusion[J]. Biomedical Signal Processing and Control, 2023, 83: 104659. [9] KLIEWER M A, BAGLEY A R, REEDER S B, et al. Normal placental structural anatomy: ultrasound and Doppler features elucidated with US-MR image fusion and ferumoxytol-enhanced MRI[J]. Abdominal Radiology, 2023, 48(2): 744-751. [10] SMORENBURG S P, LELY R J, SMIT-OCKELOEN I, et al. Automated image fusion during endovascular aneurysm repair: a feasibility and accuracy study[J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 2023: 1-9. [11] FENG X, FANG C, QIU G, et al. Multimodal medical image fusion based on visual saliency map and multichannel dynamic threshold neural P systems in sub-window variance filter domain[J]. Biomedical Signal Processing and Control, 2023, 84: 104794. [12] LI J, HU H, LEI L, et al. Remote sensing image fusion method based on progressive cascaded deep residual network[J]. Wireless Communications and Mobile Computing, 2023, 2023: 1-9. [13] FANG A, WU J, LI Y, et al. Infrared and visible image fusion via mutual information maximization[J]. Computer Vision Image Understanding, 2023, 231(2023): 103683. [14] WU J, SHEN T, WANG Q, et al. Local adaptive illumination-driven input-level fusion for infrared and visible object detection[J].Remote Sensing, 2023, 15(3): 1-19. [15] FENDRI E, BOUKHRISS R R, HAMMAMI M. Fusion of thermal infrared and visible spectra for robust moving object detection[J]. Pattern Analysis Applications, 2017, 20(4): 907-926. [16] 张靓.一种战场红外与可见光灰度侦察图像融合方法[J].舰船电子工程, 2017, 37(12): 76-80. ZHANG L. Battlefied reconnaissane infrared and visible gray images fusion[J].Ship Electronic Engineering, 2017, 37(12): 76-80. [17] 吴楠, 穆成坡, 贺杨, 等.基于嵌套连接的多尺度红外与可见光图像融合[J/OL].北京航空航天大学学报: 1-11[2023-04-26]. https: //doi.org/10.13700/j.bh.1001-5965.2023.0077. WU N, MU C P, HE Y, et al. Multi-scale infrared and visible image fusion based on nest connections[J/OL].Journal of Beijing University of Aeronautics and Astronautics: 1-11[2023-04-26]. https://doi.org/10.13700/j.bh.1001-5965.2023.0077. [18] 姜迈, 郑岩.基于SURF-HOG与显著性特征的红外可见光图像配准融合[J].激光与红外, 2023, 53(2): 261-270. JIANG M, ZHENG Y. Infrared and visible image registration and fusion based on SURF-HOG and saliency feature[J].Laser and Infrared, 2023, 53(2): 261-270. [19] LI G, LIN Y, QU X. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Information Fusion, 2021, 71: 109-129. [20] LI S, ZOU Y, WANG G, et al. Infrared and visible image fusion method based on a principal component analysis network and image pyramid[J]. Remote Sensing, 2023, 15(3): 1-22. [21] MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. [22] ZHANG B, GAO M, CHEN P, et al. Infrared and visible image fusion based on contrast enhancement guided filter and infrared feature decomposition[J]. Infrared Physics Technology, 2022, 127: 104404. [23] XING C, WANG Z, OUYANG Q, et al. Method based on bitonic filtering decomposition and sparse representation for fusion of infrared and visible images[J]. IET Image Processing, 2018, 12(12): 2300-2310. [24] OUJEBBOUR F Z, DOUDET V K. Image fusion based on evidence theory for multi-energy X-Ray computed tomography[J]. Journal of Nondestructive Evaluation, 2022, 41(3): 53. [25] TOET A, HOGERVORST M A. Progress in color night vision[J]. Optical Engineering, 2012, 51(1): 010901. [26] LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-5811. [27] JIA X, ZHU C, LI M, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proceedings of the IEEE/CVF international Conference on Computer Vision, 2021: 3496-3504. [28] LI C, ZHAO N, LU Y, et al. Weighted sparse representation regularized graph learning for RGB-T object tracking[C]//Proceedings of the 25th ACM International Conference on Multimedia, 2017: 1856-1864. [29] ZHANG M M, CHOI J, DANIILIDIS K, et al. VAIS: a dataset for recognizing maritime imagery in the visible and infrared spectrums[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015. [30] HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection: benchmark dataset and baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037-1045. [31] LIU X, AI Y, TIAN B, et al. Robust and fast registration of infrared and visible images for electro-optical pod[J]. IEEE Transactions on Industrial Electronics, 2018, 66(2): 1335-1344. [32] ZHANG X, LIU G, HUANG L, et al. IVOMFuse: an image fusion method based on infrared-to-visible object mapping[J]. Digital Signal Processing, 2023, 137: 104032. [33] TANG L, YUAN J, MA J. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82: 28-42. [34] LIU J, HAN C Z, YAO X H, et al. Evidence theory-based mixture particle filter for joint detection and tracking of multiple targets[J]. IET Radar, Sonar & Navigation, 2012, 6(7): 649-658. [35] FAN X, SHI P, NI J, et al. A thermal infrared and visible images fusion based approach for multitarget detection under complex environment[J]. Mathematical Problems in Engineering, 2015, 2015: 1-11. [36] 赵烨. 红外与可见光图像融合的无人机目标检测方法研究[D].哈尔滨:哈尔滨工业大学, 2019. ZHAO Y. Research on target detection method of UVA based on infrared and visible images[D]. Harbin:Harbin Institute of Technology, 2019. [37] SUN J, ZHU H, XU Z, et al. Poisson image fusion based on Markov random field fusion model[J]. Information Fusion, 2013, 14(3): 241-254. [38] GADE R, MOESLUND T B. Thermal cameras and applications: a survey[J]. Machine Vision Applications, 2014, 25: 245-262. [39] 李燕苹. 复杂背景下基于多传感器图像融合的远距离小目标检测[D].深圳:深圳大学, 2007. LI Y P. Long range small target detection based on multi sensor image fusion in complex background[D]. Shenzhen: Shenzhen University, 2007. [40] MAHALAXMI U S B K, RAMA RAJU N N S V, RAMESH PATNAIK M. Hybrid fusion approach of medical images using DWT, DCT, Laplacian pyramid and curvelet transform[J]. Journal of Critical Reviews, 2020, 7(14): 601-609. [41] XU Q. Image fusion and stylization processing based on multiscale transformation and convolutional neural network[J]. Computational Intelligence Neuroscience, 2022, 2022: 1181189. [42] 王长龙, 刘贺, 张帅, 等.基于NSDTCT与稀疏表示的红外和微光图像融合[J].陆军工程大学学报, 2022, 1(4): 8-13. WANG C L, LIU H, ZHANG S, et al. Fusion of infrared low-light-level images based on NSDTCT and sparse representation[J].Journal of Army Engineering University of PLA, 2022, 1(4): 8-13. [43] JIN H, JIAO L, LIU F, et al. Fusion of infrared and visual images based on contrast pyramid directional filter banks using clonal selection optimizing[J]. Optical Engineering, 2008, 47(2): 027002. [44] CHANDANA K, REDDY V U, RAMASHRI T. A novel image fusion technique using dual tree complex wavelet transform based Laplacian pyramidal decomposition[J]. International Journal of Engineering Research Technology, 2015, 11: 227-232. [45] 曾祥通, 张玉珍, 孙佳嵩.颜色对比度增强的红外与可见光图像融合方法[J].红外与激光工程, 2015, 44(4): 1198-1202. ZENG X T, ZHANG Y Z, SUN J S. One color contrast enhanced infrared and visible image fusion method.[J].Infrared and Laser Engineering, 2015, 44(4): 1198-1202. [46] HAN X, ZHANG L L, DU L Y, et al. Fusion of infrared and visible images based on discrete wavelet transform[C]//Proceedings of the Second Symposium on New Detection Technology and Its Application, National Defense Optoelectronics Forum, 2015. [47] BAVIRISETTI D P, DHULI R. Two-scale image fusion of visible and infrared images using saliency detection[J]. Infrared Physics Technology, 2016, 76: 52-64. [48] NAIDU A R, BHAVANA D, REVANTH P, et al. Fusion of visible and infrared images via saliency detection using two-scale image decomposition[J]. International Journal of Speech Technology, 2020, 23(4): 815-824. [49] SUN H, LIU Q, WANG J, et al. Fusion of infrared and visible images for remote detection of low-altitude slow-speed small targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2021, 14: 2971-2983. [50] LI Y, LIU G, BAVIRISETTI D P, et al. Infrared-visible image fusion method based on sparse and prior joint saliency detection and LatLRR-FPDE[J]. Digital Signal Processing, 2023, 134: 103910. [51] WEI H, ZHU Z, CHANG L, et al. A novel precise decomposition method for infrared and visible image fusion[C]//Proceedings of the 38th Chinese Control Conference.Shanghai: Shanghai Systems Science Press, 2019: 3341-3345. [52] REN L, PAN Z, CAO J, et al. Infrared and visible image fusion based on weighted variance guided filter and image contrast enhancement[J]. Infrared Physics and Technology, 2021, 114: 103662. [53] ZHANG X, MA Y, FAN F, et al. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition[J].JOSA A, 2017, 34(8): 1400-1410. [54] LIU Y, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. [55] MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics Technology, 2017, 82: 8-17. [56] LIN Y, CAO D. Adaptive infrared and visible image fusion method by using rolling guidance filter and saliency detection[J]. Optik, 2022, 262: 169218. [57] LIU Y, DONG L, XU W. Infrared and visible image fusion for shipborne electro-optical pod in maritime environment[J]. Infrared Physics Technology, 2023, 128: 104526. [58] 肖旭光, 肖刚, 敬忠良.空间目标融合识别算法及实验研究[J].计算机工程与应用, 2011, 47(8): 154-156. XIAO X G, XIAO G, JING Z L. Study on space target recognition algorithm and its experiment[J].Computer Engineering and Applications, 2011, 47(8): 154-156. [59] 白玉, 侯志强, 刘晓义, 等.基于可见光图像和红外图像决策级融合的目标检测算法[J].空军工程大学学报 (自然科学版), 2020, 21(6): 53-59. BAI Y, HOU Z Q, LIU X Y, et al. An object detection algorithm based on decision-level fusion of visible light image and infrared images[J].Journal of Air Force Engineering University, 2020, 21(6): 53-59. [60] 朱铠铠. 机载多源融合目标智能检测技术研究[D].西安:西安电子科技大学, 2022. ZHU K K. Study on intelligent detection technology for multi-source fusion target based on airborne platform[D].Xi’an: Xidian University, 2022. [61] 刘莲. 基于决策级融合的无人机目标跟踪方法研究[D].成都: 电子科技大学, 2022. LIU L. Research on UAV target tracking method based on decision level fusion[D].Chengdu: University of Electronic Science and Technology, 2022. [62] 宁大海, 郑晟.可见光和红外图像决策级融合目标检测算法[J].红外技术, 2023, 45(3): 282-291. NING D H, ZHENG S. An object detection algorithm based on decision-level fusion of visible light image and infrared images[J].Infrared Technology, 2023, 45(3): 282-291. [63] 唐聪, 凌永顺, 杨华, 等.基于深度学习的红外与可见光决策级融合跟踪[J].激光与光电子学进展, 2019, 56(7): 217-224. TANG C, LING Y S, YANG H, et al. Decision-level fusion tracking for Infrared and visible spectra based on deep learning[J]. Laser & Optoelectronics Progress, 2019, 56(7): 217-224. [64] HU Z H, JING Y G, WU G Q. Decision-level fusion detection method of visible and infrared images under low light conditions[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 1-13. [65] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60: 259-268. [66] MA J, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109. [67] GUO H, MA Y, MEI X, et al. Infrared and visible image fusion based on total variation and augmented Lagrangian[J]. JOSA A, 2017, 34(11): 1961-1968. [68] NIE R, MA C, CAO J, et al. A total variation with joint norms for infrared and visible image fusion[J]. IEEE Transactions on Multimedia, 2021, 24: 1460-1472. [69] DU Q, XU H, MA Y, et al. Fusing infrared and visible images of different resolutions via total variation model[J]. Sensors, 2018, 18(11): 1-17. [70] ZHAO J, CUI G, GONG X, et al. Fusion of visible and infrared images using global entropy and gradient constrained regularization[J]. Infrared Physics Technology, 2017, 81: 201-209. [71] ZHANG X, DAI X, ZHANG X, et al. Joint principal component analysis and total variation for infrared and visible image fusion[J]. Infrared Physics Technology, 2023, 128: 104523. [72] MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. [73] LUO X, ZHANG Z, WU X. A novel algorithm of remote sensing image fusion based on shift-invariant Shearlet transform and regional selection[J]. AEU-International Journal of Electronics Communications, 2016, 70(2): 186-197. [74] ZHANG Z, CUI J, LUO X, et al. Statistical correlative model in the multimodal fusion of brain images[J]. International Journal of Imaging Systems Technology, 2020, 30(4): 1066-1079. [75] LUO X, ZHANG Z, ZHANG B, et al. Image fusion with contextual statistical similarity and nonsubsampled shearlet transform[J]. IEEE Sensors Journal, 2016, 17(6): 1760-1771. [76] LUO X, JIANG Y, WANG A, et al. Infrared and visible image fusion based on multi-state contextual hidden Markov model[J]. Pattern Recognition, 2023, 138: 109431. [77] YUN Z, MUBARAK S. Visual attention detection in video sequences using spatiotemporal cues[C]//Proceedings of the 14th ACM International Conference on? Multimedia, 2006: 815-824. [78] ZOU D, YANG B. Infrared and low-light visible image fusion based on hybrid multiscale decomposition and adaptive light adjustment[J]. Optics Lasers in Engineering, 2023, 160: 107268. [79] MA Z, YUAN X, HAN S, et al. Improved chaotic particle swarm optimization algorithm with more symmetric distribution for numerical function optimization[J]. Symmetry, 2019, 11(7): 1-19. [80] TAWHID M A, ALI A F. Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems[J]. Opsearch, 2016, 53: 705-740. [81] ZHANG J, TANG B, HU S. Infrared and visible image fusion based on particle swarm optimization and dense block[J]. Frontiers in Energy Research, 2022, 10: 1001450. [82] LI H F, ZHAO J Z, YUN J X, et al. Feature dynamic alignment and refinement for infrared-visible image fusion: translation robust fusion[J]. Information Fusion, 2023, 95: 26-41. [83] DONG L L, WANG J, ZHAO L J. FusionJISI: a fusion algorithm based on infrared and visible images with joint involvement of source image[J]. Infrared Physics and Technology, 2023, 132: 104704. [84] GOSHTASBY A, NIKOLOV S G. Image fusion: advances in the state of the art[J]. Information Fusion, 2006, 8(2): 114-118. [85] AYDIN F, UGURDAG H F, LEVENT V E, et al. Rapid design of real-time image fusion on FPGA using HLS and other techniques[C]//2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 2018: 1-6. [86] ROCKINGER O. Image sequence fusion using a shift-invariant wavelet transform[C]//Proceedings of International Conference on Image Processing, 1997: 288-291. [87] SIMS O, IRVINE J. An FPGA implementation of pattern-selective pyramidal image fusion[C]//2006 International Conference on Field Programmable Logic and Applications, 2006: 1-4. [88] SONG Y J, GAO K, NI G Q, et al. Implementation of real-time Laplacian pyramid image fusion processing based on FPGA[J]. Beijing Institute of Technology (China), 2007, 6833: 315-322. [89] LI H, LIU L, HUANG W, et al. An improved fusion algorithm for infrared and visible images based on multi-scale transform[J]. Infrared Physics Technology, 2016, 74: 28-37. [90] YAN C M, GUO B L, YI M. Fast algorithm for nonsubsampled contourlet transform[J]. Acta Automatica Sinica, 2014, 40(4): 757-762. [91] YAN L, YU Z, HAN N, et al. Improved image fusion algorithm for detecting obstacles in forests[J]. J Digit Inf Manag, 2013, 11(5): 378-384. [92] MISHRA A, MAHAPATRA S, BANERJEE S. Modified Frei-Chen operator-based infrared and visible sensor image fusion for real-time applications[J]. IEEE Sensors Journal, 2017, 17(14): 4639-4646. [93] JEONG W, HAN B G, YANG H S, et al. Real-time visible-infrared image fusion using multi-guided filter[J]. KSII Transactions on Internet Information Systems, 2019, 13(6): 3092-3107. [94] AWAD M, ELLIETHY A, ALY H A. Real-time visible and near-infrared video fusion: architecture and implementation[J]. Journal of Real-Time Image Processing, 2021, 18(6): 2479-2493. [95] ZHANG L, YANG X, WAN Z, et al. A real-time FPGA implementation of infrared and visible image fusion using guided filter and saliency detection[J]. Sensors, 2022, 22(21): 1-18. [96] LI J, PENG Y, JIANG T. Embedded real-time infrared and visible image fusion for UAV surveillance[J] Journal of Real-Time Image Processing, 2021, 18(6): 2331-2345. [97] 黄西莹, 王洁, 王娇颖, 等.多源图像融合算法实时优化方法[J].应用光学, 2022, 43(4): 676-681. HUANG X Y, WANG J, WANG J Y, et al. Real-time implementation of multi-source image fusion algorithm[J]. Applied Optics, 2022, 43(4): 676-681. |
[1] | YOU Xuan’ang, ZHAO Peng, MU Xiaodong, ZHU Yongqing, SHEN Danyao. Research on Fusion of Visible and Near-Infrared Iris Based on Multi-Tasking Learning [J]. Computer Engineering and Applications, 2022, 58(21): 197-204. |
[2] | AN Xiaodong, LI Yali, WANG Fang. Overview of Infrared and Visible Image Fusion Algorithms for Automotive Driving Assistance System [J]. Computer Engineering and Applications, 2022, 58(19): 64-75. |
[3] | LI Yuchen, HUANG Yongdong. Medical Image Fusion Based on Convolutional Neural Network Model [J]. Computer Engineering and Applications, 2022, 58(15): 229-237. |
[4] | LI Yang, YANG Haitao, KONG Zhuo, ZHANG Changgong, WANG Jinyu. Review of Pixel-Level Infrared and Visible Image Fusion Methods [J]. Computer Engineering and Applications, 2022, 58(14): 40-50. |
[5] | DONG Xubin, ZHAO Qinghua. Research and Application of Improved Mask R-CNN in Aerial Image Target Detection [J]. Computer Engineering and Applications, 2021, 57(8): 133-144. |
[6] | GU Meihua, WANG Miaomiao, LI Liyao, FENG Jing. Color Image Multi-scale Fusion Graying Algorithm [J]. Computer Engineering and Applications, 2021, 57(4): 209-215. |
[7] | WANG Changcheng, ZHOU Dongming, LIU Yanyu, XIE Shidong. Multi-focus Image Fusion Algorithm Based on Unsupervised Deep Learning Model [J]. Computer Engineering and Applications, 2021, 57(21): 209-215. |
[8] | HU Yaping, KONG Weiwei, LI Meng, HUANG Cuiling. Improved Panoramic Image Mosaic Algorithm for TV Image Denoising Model [J]. Computer Engineering and Applications, 2021, 57(17): 203-209. |
[9] | LI Guang’an, CAO Yan, YUE Xiaoxin. Infrared and Visible Image Fusion Based on BEEMD Decomposition [J]. Computer Engineering and Applications, 2021, 57(14): 237-244. |
[10] | BAO Ying, WANG Leiguang, GUO Mengxiao, DAI Qinling, ZHENG Chen. Two-Step Framework for Fusing Worldview 3 Panchromatic and Shortwave Infrared Bands [J]. Computer Engineering and Applications, 2021, 57(11): 193-201. |
[11] | CAO Jun, CHEN He, ZHANG Jiawei. Research on Multi-Focus Image Fusion Algorithm Based on Super Resolution [J]. Computer Engineering and Applications, 2020, 56(3): 180-186. |
[12] | GONG Rui, WANG Xiaochun. Multi-Focus Image Fusion Method Based on C-EWT [J]. Computer Engineering and Applications, 2020, 56(2): 201-210. |
[13] | WU Fan, GAO Yuan, QIN Pinle, WANG Lifang. Medical Image Fusion Algorithm Based on Laplacian Pyramid and CNN [J]. Computer Engineering and Applications, 2020, 56(15): 208-214. |
[14] | LU Peng, LU Qi, ZOU Guoliang, WANG Zhenhua, HOU Qian. Research on Time Series Image Mosaic Method Based on Improved SIFT [J]. Computer Engineering and Applications, 2020, 56(1): 196-202. |
[15] | LI Yifei, YANG Yan, ZHANG Guoqiang. Image Haze Removal Algorithm Based on Compensation of Dark Channel and Transmission Fusion [J]. Computer Engineering and Applications, 2019, 55(3): 196-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||