[1] CIAPARRONE G, SáNCHEZ F L, TABIK S, et al. Deep learning in video multi-object tracking: a survey[J]. Neurocomputing, 2020, 381: 61-88.
[2] 晏康, 曾凤彩, 何宁, 等. 引入注意力机制的JDE多目标跟踪方法[J]. 计算机工程与应用, 2022, 58(21): 189-196.
YAN K, ZENG F C, HE N, et al. JDE multi object tracking method with attention mechanism[J]. Computer Engineering and Applications, 2022, 58(21): 189-196.
[3] 彭嘉淇, 王涛, 陈柯安, 等. 结合时空一致性的FairMOT跟踪算法优化[J]. 中国图象图形学报, 2022, 27(9): 2749-2760.
PENG J Q, WANG T, CHEN K A, et al. Spatio-temporal consistency based FairMOT tracking algorithm optimization[J]. Journal of Image and Graphics, 2022, 27(9): 2749-2760.
[4] 王黎明, 孙俊, 陈祺东. 加强重识别的行人多目标跟踪算法[J]. 计算机工程与应用, 2022, 58(21): 213-222.
WANG L M, SUN J, CHEN Q D. Pedestrain multi-object tracking algorithm with strengthened re-identification[J]. Computer Engineering and Applications, 2022, 58(21): 213-222.
[5] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//Proceedings of the European Conference on Computer Vision, 2020: 107-122.
[6] ZHANG Y, WANG C, WANG X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087.
[7] TOKMAKOV P, LI J, BURGARD W, et al. Learning to track with object permanence[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10860-10869.
[8] LIU W, SONG Y, CHEN D, et al. Deformable object tracking with gated fusion[J]. IEEE Transactions on Image Processing, 2019, 28(8): 3766-3777.
[9] WU J, CAO J, SONG L, et al. Track to detect and segment: an online multi-object tracker[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12352-12361.
[10] PANG J, QIU L, LI X, et al. Quasi-dense similarity learning for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 164-173.
[11] LIANG C, ZHANG Z, ZHOU X, et al. Rethinking the competition between detection and ReID in multiobject tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 3182-3196.
[12] WANG Q, ZHENG Y, PAN P, et al. Multiple object tracking with correlation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3876-3886.
[13] YU E, LI Z, HAN S, et al. RelationTrack: relation-aware multiple object tracking with decoupled representation[J]. IEEE Transactions on Multimedia, 2023, 25: 2686-2697.
[14] BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]///Proceedings of the 2016 IEEE International Conference on Image Processing, 2016: 3464-3468.
[15] ZHANG Y, SUN P, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[J]. arXiv:2110.06864, 2021.
[16] CAO J, WENG X, KHIRODKAR R, et al. Observation-centric SORT: rethinking SORT for robust multi-object tracking[J]. arXiv:2203.14360, 2022.
[17] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, 2017: 3645-3649.
[18] 贺愉婷, 车进, 吴金蔓. 基于YOLOv5和重识别的行人多目标跟踪方法[J]. 液晶与显示, 2022, 37(7): 880-890.
HE Y T, CHE J, WU J M. Pedestrian multi-target tracking method based on YOLOv5 and person re-identification[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7): 880-890.
[19] LENG Z, TAN M, LIU C, et al. PolyLoss: a polynomial expansion perspective of classification loss functions[J]. arXiv:2204.12511, 2022.
[20] ESS A, LEIBE B, SCHINDLER K, et al. A mobile vision system for robust multi-person tracking[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
[21] ZHANG S, BENENSON R, SCHIELE B. CityPersons: a diverse dataset for pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3213-3221.
[22] DOLLáR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: a benchmark[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 304-311.
[23] XIAO T, LI S, WANG B, et al. Joint detection and identification feature learning for person search[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3415-3424.
[24] ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1367-1376.
[25] SHAO S, ZHAO Z, LI B, et al. CrowdHuman: a benchmark for detecting human in a crowd[J]. arXiv:1805.00123, 2018.
[26] LUITEN J, OSEP A, DENDORFER P, et al. HOTA: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129(2): 548-578.
[27] ZHENG L, TANG M, CHEN Y, et al. Improving multiple object tracking with single object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2453-2462.
[28] XU Y, BAN Y, DELORME G, et al. TransCenter: transformers with dense representations for multiple-object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 7820-7835.
[29] SHAN C, WEI C, DENG B, et al. Tracklets predicting based adaptive graph tracking[J]. arXiv:2010.09015, 2020.
[30] LI W, XIONG Y, YANG S, et al. Semi-TCL: semi-supervised track contrastive representation learning[J]. arXiv:2107.02396, 2021.
[31] STADLER D, BEYERER J. On the performance of crowd-specific detectors in multi-pedestrian tracking[C]//Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2021: 1-12.
[32] WANG Y, KITANI K, WENG X. Joint object detection and multi-object tracking with graph neural networks[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, 2021: 13708-13715.
[33] SUN P, CAO J, JIANG Y, et al. TransTrack: multiple object tracking with transformer[J]. arXiv:2012.15460, 2020. |