Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (20): 67-76.DOI: 10.3778/j.issn.1002-8331.2302-0057
• Research Hotspots and Reviews • Previous Articles Next Articles
DENG Gewen, WEI Guohui, MA Zhiqing
Online:
2023-10-15
Published:
2023-10-15
邓戈文,魏国辉,马志庆
DENG Gewen, WEI Guohui, MA Zhiqing. Review of Deep Learning Methods for MRI Reconstruction[J]. Computer Engineering and Applications, 2023, 59(20): 67-76.
邓戈文, 魏国辉, 马志庆. 基于深度学习的MRI重建方法综述[J]. 计算机工程与应用, 2023, 59(20): 67-76.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2302-0057
[1] PRUESSMANN K P,WEIGER M,SCHEIDEGGER M B,et al.SENSE:sensitivity encoding for fast MRI[J].Magnetic Resonance in Medicine,1999,42(5):952-962. [2] SODICKSON D K,MANNING W J.Simultaneous acquisition of spatial harmonics(SMASH):fast imaging with radio frequency coil arrays[J].Magnetic Resonance in Medicine,1997,38(4):591-603. [3] GRISWOLD M A,JAKOB P M,HEIDEMANN R M,et al.Generalized autocalibrating partially parallel acquisitions(GRAPPA)[J].Magnetic Resonance in Medicine,2002,47(6):1202-1210. [4] LUSTIG M,PAULY J M.SPIRiT:iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J].Magnetic Resonance in Medicine,2010,64(2):457-471. [5] BLOCK K T,UECKER M,FRAHM J.Undersampled radial MRI with multiple coils.Iterative image reconstruction using a total variation constraint[J].Magnetic Resonance in Medicine,2007,57(6):1086-1098. [6] LUSTIG M,DONOHO D,PAULY J M.Sparse MRI:the application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195. [7] LIN D J,JOHNSON P M,KNOLL F,et al.Artificial intelligence for MR image reconstruction:an overview for clinicians[J].Journal of Magnetic Resonance Imaging,2021,53(4):1015-1028. [8] BEN YEDDER H,CARDOEN B,HAMARNEH G.Deep learning for biomedical image reconstruction:a survey[J].Artificial Intelligence Review,2021,54(1):215-251. [9] LEE J G,JUN S,CHO Y W,et al.Deep learning in medical imaging:general overview[J].Korean Journal of Radiology,2017,18(4):570-584. [10] RUECKERT D,SCHNABEL J.Model-based and data-driven strategies in medical image computing[J].Proceedings of the IEEE,2020,108(1):110-124. [11] GHODRATI V,SHAO J,BYDDER M,et al.MR image reconstruction using deep learning:evaluation of network structure and loss functions[J].Quantitative Imaging in Medicine and Surgery,2019,9(9):1516-1527. [12] LIANG D,CHENG J,KE Z,et al.Deep magnetic resonance image reconstruction:inverse problems meet neural networks[J].IEEE Signal Processing Magazine,2020,37(1):141-151. [13] WANG S,SU Z,YING L,et al.Accelerating magnetic resonance imaging via deep learning[C]//2016 IEEE 13th International Symposium on Biomedical Imaging(ISBI),2016:514-517. [14] MONTALT-TORDERA J,MUTHURANGU V,HAUPTMANN A,et al.Machine learning in magnetic resonance imaging:image reconstruction[J].Physica Medica,2021,83:79-87. [15] PAL A,RATHI Y.A review and experimental evaluation of deep learning methods for MRI reconstruction[J].arXiv:2109.08618,2021. [16] WANG S,XIAO T,LIU Q,et al.Deep learning for fast MR imaging:a review for learning reconstruction from incomplete k-space data[J].Biomedical Signal Processing and Control,2021,68:102579. [17] ZHU B,LIU J Z,CAULEY S F,et al.Image reconstruction by domain-transform manifold learning[J].Nature,2018,555(7697):487. [18] COLE E K,CHENG J Y,PAULY J M,et al.Analysis of deep complex-valued convolutional neural networks for MRI reconstruction[J].arXiv:2004.01738,2020. [19] GAN W,ELDENIZ C,LIU J,et al.Image reconstruction for MRI using deep CNN priors trained without groundtruth[J].arXiv:2204.04771,2022. [20] HAUPTMANN A,ARRIDGE S,LUCKA F,et al.Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease[J].Magnetic Resonance in Medicine,2019,81(2):1143-1156. [21] HAN Y,SUNWOO L,YE J C.k-Space deep learning for accelerated MRI[J].IEEE Transactions on Medical Imaging,2020,39(2):377-386. [22] DHENGRE N,SINHA S.Multiscale U-net-based accele- rated magnetic resonance imaging reconstruction[J].Signal,Image and Video Processing,2022,16(4):881-888. [23] CAI C,WANG C,ZENG Y,et al.Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network[J].Magnetic Resonance in Medicine,2018,80(5):2202-2214. [24] BAO L,YE F,CAI C,et al.Undersampled MR image reconstruction using an enhanced recursive residual network[J].Journal of Magnetic Resonance,2019,305:232-246. [25] DU J,HE Z,WANG L,et al.Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network[J].Neurocomputing,2020,392:209-220. [26] PAWAR K,CHEN Z,SHAH N J,et al.Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation[J].NMR in Biomedicine,2022,35(4):e4225. [27] ZHANG T,JACKSON L H,UUS A,et al.Self-supervised recurrent neural network for 4D abdominal and in-utero MR imaging[C]//International Workshop on Machine Learning for Medical Image Reconstruction,2019:16-24. [28] QIN C,SCHLEMPER J,CABALLERO J,et al.Convolutional recurrent neural networks for dynamic MR image reconstruction[J].IEEE Transactions on Medical Imaging,2019,38(1):280-290. [29] OH C,CHUNG J Y,HAN Y.An end-to-end recurrent neural network for radial MR image reconstruction[J].Sensors,2022,22(19):7277. [30] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].arXiv:1706.03762,2017. [31] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020. [32] FENG C M,YAN Y,CHEN G,et al.Accelerated multi-modal MR imaging with transformers[J].arXiv:2106.14248,2021. [33] FENG C M,YAN Y,FU H,et al.Task transformer network for joint MRI reconstruction and super-resolution[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2021:307-317. [34] MAHAPATRA D,GE Z.MR image super resolution by combining feature disentanglement CNNs and vision transformers[C]//International Conference on Medical Imaging with Deep Learning,2022. [35] PARK T,ZHU J Y,WANG O,et al.Swapping autoencoder for deep image manipulation[C]//Advances in Neural Information Processing Systems,2020:7198-7211. [36] KORKMAZ Y,DAR S U,YURT M,et al.Unsupervised MRI reconstruction via zero-shot learned adversarial transformers[J].IEEE Transactions on Medical Imaging,2022,41(7):1747-1763. [37] KORKMAZ Y,YURT M,DAR S U H,et al.Deep MRI reconstruction with generative vision transformers[C]//International Workshop on Machine Learning for Medical Image Reconstruction,2021:54-64. [38] LIN K,HECKEL R.Vision transformers enable fast and robust accelerated MRI[C]//International Conference on Medical Imaging with Deep Learning,2022. [39] LIU Z,LIN Y,CAO Y,et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:10012-10022. [40] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [41] SHENDE P,PAWAR M,KAKDE S.A brief review on:MRI images reconstruction using GAN[C]//2019 International Conference on Communication and Signal Processing(ICCSP),2019:139-142. [42] YANG G,YU S,DONG H,et al.DAGAN:deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J].IEEE Transactions on Medical Imaging,2018,37(6):1310-1321. [43] MARDANI M,GONG E,CHENG J Y,et al.Deep generative adversarial neural networks for compressive sensing MRI[J].IEEE Transactions on Medical Imaging,2019,38(1):167-179. [44] QUAN T M,NGUYEN-DUC T,JEONG W K.Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss[J].IEEE Transactions on Medical Imaging,2018,37(6):1488-1497. [45] JIANG M,YUAN Z,YANG X,et al.Accelerating CS-MRI reconstruction with fine-tuning Wasserstein generative adversarial network[J].IEEE Access,2019,7:152347-152357. [46] SHAUL R,DAVID I,SHITRIT O,et al.Subsampled brain MRI reconstruction by generative adversarial neural networks[J].Medical Image Analysis,2020,65:101747. [47] LV J,WANG C,YANG G.PIC-GAN:a parallel imaging coupled generative adversarial network for accelerated multi-channel MRI reconstruction[J].Diagnostics,2021,11(1):61. [48] HUANG J,DING W,LV J,et al.Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information[J].Applied Intelligence,2022:1-18. [49] MAKHZANI A,SHLENS J,JAITLY N,et al.Adversarial autoencoders[J].arXiv:1511.05644,2015. [50] TEZCAN K C,BAUMGARTNER C F,LUECHINGER R,et al.MR image reconstruction using deep density priors[J].IEEE Transactions on Medical Imaging,2019,38(7):1633-1642. [51] ZOU Q,AHMED A H,NAGPAL P,et al.Dynamic imaging using a deep generative SToRM(Gen-SToRM) model[J].IEEE Transactions on Medical Imaging,2021,40(11):3102-3112. [52] HIGGINS I,MATTHEY L,PAL A,et al.beta-VAE:learning basic visual concepts with a constrained variational framework[C]//International Conference on Learning Representations,2016. [53] ZOU Q,AHMED A H,NAGPAL P,et al.Deep generative storm model for dynamic imaging[C]//2021 IEEE 18th International Symposium on Biomedical Imaging(ISBI),2021:114-117. [54] CHUNG H,YE J C.Score-based diffusion models for accelerated MRI[J].Medical Image Analysis,2022:102479. [55] SONG Y,SHEN L,XING L,et al.Solving inverse problems in medical imaging with score-based generative models[J].arXiv:2111.08005,2021. [56] CHUNG H,LEE E S,YE J C.MR image denoising and super-resolution using regularized reverse diffusion[J].IEEE Transactions on Medical Imaging,2023,42(4):922-934. [57] CHEN E Z,WANG P,CHEN X,et al.Pyramid convolutional RNN for MRI image reconstruction[J].IEEE Transactions on Medical Imaging,2022,41(8):2033-2047. [58] HUANG J,XING X,GAO Z,et al.Swin deformable attention U-Net transformer(SDAUT) for explainable fast MRI[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2022:25th International Conference,Singapore,September 18-22,2022:538-548. [59] ZHAO X,YANG T,LI B,et al.SwinGAN:a dual-domain swin transformer-based generative adversarial network for MRI reconstruction[J].Computers in Biology and Medicine,2023,153:106513. [60] HAMMERNIK K,KLATZER T,KOBLER E,et al.Learning a variational network for reconstruction of accelerated MRI data[J].Magnetic Resonance in Medicine,2018,79(6):3055-3071. [61] SCHLEMPER J,CABALLERO J,HAJNAL J V,et al.A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J].IEEE Transactions on Medical Imaging,2018,37(2):491-503. [62] HOSSEINI S A H,YAMAN B,MOELLER S,et al.Dense recurrent neural networks for accelerated MRI:history-cognizant unrolling of optimization algorithms[J].IEEE Journal of Selected Topics in Signal Processing,2020,14(6):1280-1291. [63] MARDANI M,MONAJEMI H,PAPYAN V,et al.Recurrent generative adversarial networks for proximal learning and automated compressive image recovery[J].arXiv:1711.10046,2017. [64] ZHANG J,GHANEM B.ISTA-Net:interpretable optimization-inspired deep network for image compressive sensing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:1828-1837. [65] AGGARWAL H K,MANI M P,JACOB M.MoDL:model-based deep learning architecture for inverse problems[J].IEEE Transactions on Medical Imaging,2019,38(2):394-405. [66] DUAN J,SCHLEMPER J,QIN C,et al.VS-Net:variable splitting network for accelerated parallel MRI reconstruction[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2019:713-722. [67] YANG Y,SUN J,LI H,et al.ADMM-Net:a deep learning approach for compressive sensing MRI[J].arXiv:1705.06869,2017. [68] YANG Y,SUN J,LI H,et al.ADMM-CSNet:a deep learning approach for image compressive sensing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(3):521-538. [69] ZHANG X,LIAN Q,YANG Y,et al.A deep unrolling network inspired by total variation for compressed sensing MRI[J].Digital Signal Processing,2020,107:102856. [70] BISWAS S,AGGARWAL H K,JACOB M.Dynamic MRI using model-based deep learning and SToRM priors:MoDL-SToRM[J].Magnetic Resonance in Medicine,2019,82(1):485-494. [71] CHENG J,WANG H,YING L,et al.Model learning:primal dual networks for fast MR imaging[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2019:21-29. [72] CHENG J,WANG H,ZHU Y,et al.Model-based deep medical imaging:the roadmap of generalizing iterative reconstruction model using deep learning[J].arXiv:1906. 08143,2019. [73] VAN ESSEN D C,UGURBIL K,AUERBACH E,et al.The human connectome project:a data acquisition perspective[J].Neuroimage,2012,62(4):2222-2231. [74] ZBONTAR J,KNOLL F,SRIRAM A,et al.fastMRI:an open dataset and benchmarks for accelerated MRI[J].arXiv:1811.08839,2018. [75] SOUZA R,LUCENA O,GARRAFA J,et al.An open,multi-vendor,multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement[J].Neuroimage,2018,170:482-494. [76] MENZE B H,JAKAB A,BAUER S,et al.The multimodal brain tumor image segmentation benchmark(BRATS)[J].IEEE Transactions on Medical Imaging,2015,34(10):1993-2024. [77] BERNARD O,LALANDE A,ZOTTI C,et al.Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis:is the problem solved?[J].IEEE Transactions on Medical Imaging,2018,37(11):2514-2525. [78] EO T,JUN Y,KIM T,et al.KIKI-net:cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J].Magnetic Resonance in Medicine,2018,80(5):2188-2201. [79] LV J,CHEN K,YANG M,et al.Reconstruction of undersampled radial free-breathing 3D abdominal MRI using stacked convolutional auto-encoders[J].Medical Physics,2018,45(5):2023-2032. [80] LI X L,THICKSTUN J,GULRAJANI I,et al.Diffusion-LM improves controllable text generation[J].arXiv:2205.14217,2022. [81] BREMPONG E A,KORNBLITH S,CHEN T,et al.Denoising pretraining for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:4175-4186. [82] ALCARAZ J M L,STRODTHOFF N.Diffusion-based time series imputation and forecasting with structured state space models[J].arXiv:2208.09399,2022. [83] AVRAHAMI O,LISCHINSKI D,FRIED O.Blended diffusion for text-driven editing of natural images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:18208-18218. |
[1] | GOU Yuanmin, YAN Jianwei, ZHANG Fugui, SUN Chengyu, XU Yong. Research Progress on Vision System and Manipulator of Fruit Picking Robot [J]. Computer Engineering and Applications, 2023, 59(9): 13-26. |
[2] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[3] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[4] | SUN Aijing, WANG Guoqing. Neighbor Relation-Aware Graph Convolutional Network for Recommendation [J]. Computer Engineering and Applications, 2023, 59(9): 112-122. |
[5] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[6] | LI Wenju, CHU Wanghui, CUI Liu, SU Pan, ZHANG Gan. 3D Object Detection Method Combining on Graph Sampling and Graph Attention [J]. Computer Engineering and Applications, 2023, 59(9): 237-244. |
[7] | WANG Changhai, LIANG Hui, WANG Bo, CUI Xiaoxu. Graph Convolutional Index Trend Prediction Based on Correlation of Index Constituent Stocks [J]. Computer Engineering and Applications, 2023, 59(9): 319-328. |
[8] | ZHANG Ting, ZHANG Xingzhong, WANG Huimin, YANG Gang, WANG Dawei. 3D Object Detection in Substation Scene Based on Graph Neural Network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336. |
[9] | YANG Chongluo, SHENG Long, WEI Zhongcheng, WANG Wei. Research on COVID-19 Text Entity Relation Extraction and Dataset Construction Methods [J]. Computer Engineering and Applications, 2023, 59(8): 97-104. |
[10] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[11] | LU Lin, JI Fanfan, YUAN Xiaotong. Sparse Binary Programming Method for Pruning of Randomly Initialized Neural Networks [J]. Computer Engineering and Applications, 2023, 59(8): 138-147. |
[12] | LAN Hong, CHEN Hao, ZHANG Pufen. Point Cloud Classification and Segmentation Model Based on Graph Convolution and 3D Direction Convolution [J]. Computer Engineering and Applications, 2023, 59(8): 182-191. |
[13] | CUI Shaoguo, DU Xiao, YANG Zetian. Neural Recommendation Algorithm Using Combinations of Low and High-Order Features Based on Multi-Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(8): 192-199. |
[14] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[15] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||