Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (22): 36-56.DOI: 10.3778/j.issn.1002-8331.2211-0358
• Research Hotspots and Reviews • Previous Articles Next Articles
LIAO Chunlin, ZHANG Hongjun, LIAO Xianglin, CHENG Kai, LI Dashuo, WANG Hang
Online:
2023-11-15
Published:
2023-11-15
廖春林,张宏军,廖湘琳,程恺,李大硕,王航
LIAO Chunlin, ZHANG Hongjun, LIAO Xianglin, CHENG Kai, LI Dashuo, WANG Hang. Survey of Open Source Natural Language Processing Tools[J]. Computer Engineering and Applications, 2023, 59(22): 36-56.
廖春林, 张宏军, 廖湘琳, 程恺, 李大硕, 王航. 开源自然语言处理工具综述[J]. 计算机工程与应用, 2023, 59(22): 36-56.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2211-0358
[1] BIRD?S,KLEIN?E,LOPER E.Natural language processing with Python[M].Sebastopol:O’Reilly Media,2009:42-44. [2] MANNING C D,SURDEANU M,BAUER J,et al.The Stanford CoreNLP natural language processing toolkit[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:System Demonstrations,2014:55-60. [3] CHE W,FENG Y,QIN L,et al.N-LTP:an open-source neural language technology platform for Chinese[J].arXiv:2009.11616,2020. [4] 刘挺,车万翔,李正华.语言技术平台[J].中文信息学报,2011,25(6):53-63. LIU T,CHE W P,LI Z H.Language technology platform[J].Journal of Chinese Information Processing,2011,25(6):53-63. [5] 刘梦迪,梁循.基于偏旁部首知识表示学习的汉字字形相似度计算方法[J].中文信息学报,2021,35(12):47-59. LIU M D,LIANG X.A method of Chinese character glyph similarity calculation based on radical knowledge representation learning[J].Journal of Chinese Information Processing,2021,35(12):47-59. [6] LOU J,LU Y,DAI D,et al.Universal information extraction as unified semantic matching[J].arXiv:2301.03282,2023. [7] CARRIóN S,CASACUBERTA F.On the effectiveness of quasi character-level models for machine translation[C]//Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas(Volume 1:Research Track),2022:131-143. [8] GARDNER M,GRUS J,NEUMANN M,et al.A deep semantic natural language processing platform[J].arXiv:1803.07640,2017. [9] SUN M,CHEN X,ZHANG K,et al.THULAC:an efficient lexical analyzer for Chinese[R].Tsinghua University,2016. [10] SUN M,LI J,GUO Z,et al.THUCTC:an efficient Chinese text classifier[R].Tsinghua University,2016. [11] ZENG G,QI F,ZHOU Q,et al.OpenAttack:an open-source textual adversarial attack toolkit[J].arXiv:2009.09191,2020. [12] ZHANG J,DING Y,SHEN S,et al.THUMT:an open source toolkit for neural machine translation[J].arXiv:1706.06415,2017. [13] HAN X,GAO T,YAO Y,et al.OpenNRE:an open and extensible toolkit for neural relation extraction[J].arXiv:1909.13078,2019. [14] GENG Z,YAN H,QIU X,et al.fastHan:a BERT-based multi-task toolkit for Chinese NLP[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics,2021:99-106. [15] JIAO Z,SUN S,SUN K.Chinese lexical analysis with deep Bi-GRU-CRF network[J].arXiv:1807.01882,2018. [16] 张华平,商建云.NLPIR-Parser:大数据语义智能分析平台[J].语料库语言学,2019,6(1):87-104. ZHANG H P,SHANG J Y.NLPIR-Parser:an intelligent semantic analysis toolkit for big data[J].Corpus Linguistics,2019,6(1):87-104. [17] HE H,CHOI J D.The stem cell hypothesis:Dilemma behind multi-task learning with transformer encoders[J].arXiv:2109.06939,2021. [18] AKBIK A,BERGMANN T,BLYTHE D,et al.FLAIR:an easy-to-use framework for state-of-the-art NLP[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics(Demonstrations),2019:54-59. [19] STRAKA M,STRAKOVá J.Tokenizing,pos tagging,lemmatizing and parsing UD 2.0 with UDPipe[C]//Proceedings of the CoNLL 2017 Shared Task:Multilingual Parsing from Raw Text to Universal Dependencies,2017:88-99. [20] STRAKA M,STRAKOVá J,HAJI? J.Evaluating contextualized embeddings on 54 languages in POS tagging,lemmatization and dependency parsing[J].arXiv:1908. 07448,2019. [21] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [22] QI P,ZHANG Y,ZHANG Y,et al.Stanza:a Python natural language processing toolkit for many human languages[J].arXiv:2003.07082,2020. [23] WANG C,XU B.Convolutional neural network with word embeddings for Chinese word segmentation[J].arXiv:1711. 04411,2017. [24] PIETRA S,PIETRA S,PIETRA S.A maximum entropy approach to natural language processing[M].Cambridge:MIT Press,1996. [25] RABINER L,JUANG B.An introduction to hidden Markov models[J].IEEE ASSP Magazine,1986,3(1):4-16. [26] LAFFERTY J,MCCALLUM A,PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning,2001:282-289. [27] FINE S,SINGER Y,TISHBY N.The hierarchical hidden Markov model:analysis and applications[J].Machine Learning,1998,32(1):41-62. [28] 刘群,张华平,俞鸿魁,等.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. LIU Q,ZHANG H P,YU H K,et al.Chinese lexical analysis using cascaded hidden Markov model[J].Journal of Computer Research and Development,2004,41(8):1421-1429. [29] MCCALLUM A,FREITAG D,PEREIRA F C N.Maximum entropy Markov models for information extraction and segmentation[C]//Proceedings of the 17th International Conference on Machine Learning,2000:591-598. [30] JELINEK F,LAFFERTY J D,MERCER R L.Basic methods of probabilistic context free grammars[M].Berlin,Heidelberg:Springer,1992. [31] MIHALCEA R,TARAU P.TextRank:bringing order into text[C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing,2004:404-411. [32] BENGIO Y,DUCHARME R,VINCENT P.A neural probabilistic language model[C]//Advances in Neural Information Processing Systems 13,2000. [33] CHEN D,MANNING C D.A fast and accurate dependency parser using neural networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,2014:740-750. [34] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [35] KIM Y.Convolutional neural networks for sentence classification[J].arXiv:1408.5882,2014. [36] YIN W,KANN K,YU M,et al.Comparative study of CNN and RNN for natural language processing[J].arXiv:1702.01923,2017. [37] SATHASIVAM S,ABDULLAH W A T W.Logic learning in hopfield networks[J].arXiv:0804.4075,2008. [38] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [39] CHO K,MERRIENBOER B V,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,2014:1724-1734. [40] LIPTON Z C,BERKOWITZ J,ELKAN C.A critical review of recurrent neural networks for sequence learning[J].arXiv:1506.00019,2015. [41] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems 27,2014. [42] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. [43] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems 30,2017:5998-6008. [44] BACCIU D,ERRICA F,MICHELI A,et al.A gentle introduction to deep learning for graphs[J].Neural Networks,2020,129:203-221. [45] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems 29,2016. [46] VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [47] ZHANG J,SHI X,XIE J,et al.GAAN:gated attention networks for learning on large and spatiotemporal graphs[J].arXiv:1803.07294,2018. [48] 王思力,张华平,王斌.双数组Trie树算法优化及其应用研究[J].中文信息学报,2006,20(5):24-30. WANG S L,ZHANG H P,WANG B.Research of optimization on double-array trie and its application[J].Journal of Chinese Information Processing,2006,20(5):24-30. [49] HUANG Z,XU W,YU K.Bidirectional LSTM-CRF models for sequence tagging[J].arXiv:1508.01991,2015. [50] DOZAT T,MANNING C D.Deep biaffine attention for neural dependency parsing[J].arXiv:1611.01734,2016. [51] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [52] BOJANOWSKI P,GRAVE E,JOULIN A,et al.Enriching word vectors with subword information[J].Transactions of the Association for Computational Linguistics,2017,5:135-146. [53] PENNINGTON J,SOCHER R,MANNING C D.GloVe:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,2014:1532-1543. [54] PETERS M E,NEUMANN M,IYYER M,et al.Deep contextualized word representations[J].arXiv:1802.05365,2018. [55] RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[EB/OL].(2018)[2022-10-18].https://cdn.openai.com/research-covers/language-unsupervised/language_ understanding_paper.pdf. [56] SUN Y,WANG S,LI Y,et al.ERNIE:enhanced representation through knowledge integration[J].arXiv:1904.09223,2019. [57] RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners[J].OpenAI Blog,2019,1(8):9. [58] BROWN T,MANN B,RYDER N,et al.Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33,2020:1877-1901. [59] LIU Y,OTT M,GOYAL N,et al.RoBERTa:a robustly optimized BERT pretraining approach[J].arXiv:1907.11692,2019. [60] LAN Z,CHEN M,GOODMAN S,et al.ALBERT:a lite BERT for self-supervised learning of language representations[J].arXiv:1909.11942,2019. [61] CLARK K,LUONG M T,LE Q V,et al.ELECTRA:pre-training text encoders as discriminators rather than generators[J].arXiv:2003.10555,2020. [62] BRANTS T.TnT—a statistical part-of-speech tagger[J].arXiv:cs/0003055,2000. [63] HAJIC J,RAAB J,SPOUSTA M.Semi-supervised training for the averaged perceptron POS tagger[C]//Proceedings of the 12th Conference of the European Chapter of the ACL,2009:763-771. [64] NIVRE J.Dependency parsing[J].Language and Linguistics Compass,2010,4(3):138-152. [65] CHARNIAK E.Statistical parsing with a context-free grammar and word statistics[C]//Proceedings of the 14th National Conference on Artificial Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence,1997:598-603. [66] JOSHI V,PETERS M,HOPKINS M.Extending a parser to distant domains using a few dozen partially annotated examples[J].arXiv:1805.06556,2018. [67] XU K,WU L,WANG Z,et al.Exploiting rich syntactic information for semantic parsing with graph-to-sequence model[J].arXiv:1808.07624,2018. [68] CHEN Y,WU L,ZAKI M J.Reinforcement learning based graph-to-sequence model for natural question generation[J].arXiv:1908.04942,2019. [69] XU K,WU L,WANG Z,et al.Graph2seq:graph to sequence learning with attention-based neural networks[J].arXiv:1804.00823,2018. [70] YAN H,DENG B,LI X,et al.TENER:adapting transformer encoder for named entity recognition[J].arXiv:1911.04474,2019. [71] XU C,ZHOU W,GE T,et al.BERT-of-Theseus:compressing BERT by progressive module replacing[J].arXiv:2002.02925,2020. [72] WANG K,ZONG C,SU K Y.Which is more suitable for Chinese word segmentation,the generative model or the discriminative one?[C]//Proceedings of the 23rd Pacific Asia Conference on Language,Information and Computation,2009,2:827-834. [73] RASOOLI M S,FAILI H.Fast unsupervised dependency parsing with arc-standard transitions[C]//Proceedings of the Joint Workshop on Unsupervised and Semi-Supervised Learning in NLP,2012:1-9. [74] 张李义,李亚子.基于反序词典的中文逆向最大匹配分词系统设计[J].现代图书情报技术,2006(8):42-45. ZHANG L Y,LI Y Z.A Chinese reverse-order directional maximum mathching segmentation system design based converse dictionary[J].New Technology of Library and Information Service,2006(8):42-45. [75] XU W.LSTM Shift-reduce CCG parsing[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:1754-1764. [76] LUO R,XU J,ZHANG Y,et al.PKUSEG:a toolkit for multi-domain Chinese word segmentation[J].arXiv:1906. 11455,2019. [77] ZHANG Y,ZHOU H,LI Z.Fast and accurate neural CRF constituency parsing[J].arXiv:2008.03736,2020. [78] KUMAR A,ALBUQUERQUE V H C.Sentiment analysis using XLM-R transformer and zero-shot transfer learning on resource-poor Indian language[J].Transactions on Asian and Low-Resource Language Information Processing,2021,20(5):1-13. [79] HONNIBAL M,GOLDBERG Y,JOHNSON M.A non-monotonic arc-eager transition system for dependency parsing[C]//Proceedings of the 17th Conference on Computational Natural Language Learning,2013:163-172. [80] TOUTANOVA K,KLEIN D,MANNING C D,et al.Feature-rich part-of-speech tagging with a cyclic dependency network[C]//Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics,2003:252-259. [81] ZHU M,ZHANG Y,CHEN W,et al.Fast and accurate shift-reduce constituent parsing[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2013:434-443. [82] PELLEG D,MOORE A.Accelerating exact k-means algorithms with geometric reasoning[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,1999:277-281. [83] HINTON G E,NEAL R M.A view of the EM algorithm that justifies incremental,sparse,and other variants[M]//Learning in graphical models.Dordrecht:Springer,1998:355-368. [84] MCCANN B,BRADBURY J,XIONG C,et al.Learned in translation:contextualized word vectors[C]//Advances in Neural Information Processing Systems 30,2017. [85] RIBEIRO M T,SINGH S,GUESTRIN C.Semantically equivalent adversarial rules for debugging NLP models[C]//Proceedings of the 56th Annual meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2018:856-865. [86] IYYER M,WIETING J,GIMPEL K,et al.Adversarial example generation with syntactically controlled paraphrase networks[J].arXiv:1804.06059,2018. [87] ZHAO Z,DUA D,SINGH S.Generating natural adversarial examples[J].arXiv:1710.11342,2017. [88] JIN D,JIN Z,ZHOU J T,et al.Is BERT really robust? A strong baseline for natural language attack on text classification and entailment[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:8018-8025. [89] REN S,DENG Y,HE K,et al.Generating natural language adversarial examples through probability weighted word saliency[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:1085-1097. [90] ALZANTOT M,SHARMA Y,ELGOHARY A,et al.Generating natural language adversarial examples[J].arXiv:1804. 07998,2018. [91] PAPERNOT N,MCDANIEL P,SWAMI A,et al.Crafting adversarial input sequences for recurrent neural networks[C]//Proceedings of the 2016 IEEE Military Communications Conference,2016:49-54. [92] LI J,JI S,DU T,et al.TextBugger:generating adversarial text against real-world applications[J].arXiv:1812.05271,2018. [93] WALLACE E,FENG S,KANDPAL N,et al.Universal adversarial triggers for attacking and analyzing NLP[J].arXiv:1908.07125,2019. [94] EBRAHIMI J,RAO A,LOWD D,et al.HotFlip:white-box adversarial examples for text classification[J].arXiv:1712. 06751,2017. [95] EGER S,?AHIN G G,RüCKLé A,et al.Text processing like humans do:visually attacking and shielding NLP systems[J].arXiv:1903.11508,2019. [96] GAO J,LANCHANTIN J,SOFFA M L,et al.Black-box generation of adversarial text sequences to evade deep learning classifiers[C]//Proceedings of the 2018 IEEE Security and Privacy Workshops,2018:50-56. [97] SNELL J,SWERSKY K,ZEMEL R.Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems 30,2017. [98] WESTON J,CHOPRA S,BORDES A.Memory networks[J].arXiv:1410.3916,2014. [99] ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining,1996:226-231. [100] 刘斌.基于Mask-RCNN的图像中文描述生成器[D].北京:北京理工大学,2018. LIU B.Mask-RCNN based image chinese caption generator[D].Beijing:Beijing Institute of Technology,2018. [101] RECASENS M,MARNEFFE M D,POTTS C.The life and death of discourse entities:identifying singleton mentions[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2013:627-633. [102] LEE H,PEIRSMAN Y,CHANG A,et al.Stanford’s multi-pass sieve coreference resolution system at the CoNLL-2011 shared task[C]//Proceedings of the 15th Conference on Computational Natural Language Learning:Shared Task,2011:28-34. [103] RAGHUNATHAN K,LEE H,RANGARAJAN S,et al.A multi-pass sieve for coreference resolution[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,2010:492-501. [104] LEE H,CHANG A,PEIRSMAN Y,et al.Deterministic coreference resolution based on entity-centric,precision-ranked rules[J].Computational Linguistics,2013,39(4):885-916. [105] CLARK K,MANNING C D.Entity-centric coreference resolution with model stacking[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers),2015:1405-1415. [106] CLARK K,MANNING C D.Deep reinforcement learning for mention-ranking coreference models[J].arXiv:1609.08667,2016. [107] KURNIASARI L,SETYANTO A.Sentiment analysis using recurrent neural network[J].Journal of Physics Conference Series,2020,1471:012018. [108] SURDEANU M,MCCLOSKY D,SMITH M,et al.Customizing an information extraction system to a new domain[C]//Proceedings of the ACL 2011 Workshop on Relational Models of Semantics,2011:2-10. [109] AMEED H,KETBI S,KAABI A,et al.Arabic light stemmer:a new enhanced approach[C]//Proceedings of the 2nd International Conference on Innovations in Information Technology,2005. [110] ABAINIA K,REBBANI H.Comparing the effectiveness of the improved ARLSTem algorithm with existing Arabic light stemmers[C]//Proceedings of the 2019 International Conference on Theoretical and Applicative Aspects of Computer Science,Skikda,2019:1-8. [111] WEISSWEILER L,FRASER A.Developing a stemmer for German based on a comparative analysis of publicly available stemmers[C]//Proceedings of the 2017 International Conference of the German Society for Computational Linguistics and Language Technology.Cham:Springer,2017:81-94. [112] TAGHVA K,ELKHOURY R,COOMBS J.Arabic stemming without a root dictionary[C]//Proceedings of the 2005 International Conference on Information Technology:Coding and Computing,2005:152-157. [113] PAICE C D.Another stemmer[J].ACM SIGIR Forum,1990,24(3):56-61. [114] PORTER M F.An algorithm for suffix stripping[J].Program,1980,14(3):130-137. [115] YANG Z,DAI Z,YANG Y,et al.XLNet:generalized autoregressive pretraining for language understanding[C]//Advances in Neural Information Processing Systems 32,2019. [116] REIMERS N,GUREVYCH I.Sentence-BERT:sentence embeddings using Siamese BERT-networks[J].arXiv:1908. 10084,2019. [117] BARROW J,PESKOV D.UMDeep at SemEval-2017 task 1:end-to-end shared weight LSTM model for semantic textual similarity[C]//Proceedings of the 11th International Workshop on Semantic Evaluation,2017:180-184. [118] HOU M,SONG Y H,XU D,et al.A multi-pattern matching algorithm based on double array Trie[M]//Advances in Computer Science and Its Applications.Cham:Springer,2014:863-868. [119] RANJAN M N M,GHORPADE Y R,KANTHALE G R,et al.Document classification using LSTM neural network[J].Journal of Data Mining and Management,2017,2(2):1-9. |
[1] | Dawel Abilhayer, Nurmemet Yolwas, LIU Yan. On language model construction for LVCSR in Kazakh [J]. Computer Engineering and Applications, 2016, 52(24): 178-181. |
[2] | OUYANG Liubo, GUO Hailin. Automatic analysis modeling method based on structural description of domain requirements [J]. Computer Engineering and Applications, 2016, 52(20): 52-57. |
[3] | HAO Dongliang, YANG Hongwu, ZHANG Ce, ZHANG Shuai, GUO Lizhao, YANG Jingbo. Label generation for Chinese statistical parametric speech synthesis [J]. Computer Engineering and Applications, 2016, 52(19): 146-153. |
[4] | FU Quansheng, DONG Kaikun, YIN Lu. Adult image recognition algorithm based on Bag-of-Visual-Words and text analysis [J]. Computer Engineering and Applications, 2015, 51(4): 175-179. |
[5] | YU Jinping1, ZHU Guixiang2, MEI Hongbiao3. Research and improvement of HITS algorithm based on Web link analysis [J]. Computer Engineering and Applications, 2013, 49(21): 42-45. |
[6] | XIONG Zhongyang, XIANG Haiyan, ZHANG Yufang. Local context analysis approach combined with user log [J]. Computer Engineering and Applications, 2012, 48(12): 74-77. |
[7] | LIU Shun-jiang,LIU Guo-hua,LI Ying. Complex schema matching approach based on informational context of data sources [J]. Computer Engineering and Applications, 2010, 46(9): 120-122. |
[8] | LI Wen-bin,CHEN Yi-ying,ZHANG Juan,ZHANG Xin-dong. Using Fisher linear discriminant analysis to extracting classifiers [J]. Computer Engineering and Applications, 2010, 46(14): 132-134. |
[9] | KANG Jun-jian1,2,DU Zai-lin3,ZHANG Xin-dong1,ZHU Qun-ying1. Using information gain method to select classifiers [J]. Computer Engineering and Applications, 2009, 45(14): 158-160. |
[10] | ,. DOM-based Web Document Segmentation [J]. Computer Engineering and Applications, 2006, 42(32): 0-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||