Personal Credit Risk Prediction Based on Graph Convolutional Network
LIANG Longyue, WANG Haozhu
1.School of Economics, Guizhou University, Guiyang 550025, China
2.Center for the Development and Application of Marxist Economics, Guizhou University, Guiyang 550025, China
3.School of Economics, Nankai University, Tianjin 300071, China
LIANG Longyue, WANG Haozhu. Personal Credit Risk Prediction Based on Graph Convolutional Network[J]. Computer Engineering and Applications, 2023, 59(17): 275-285.
[1] 王正位,周从意,廖理,等.消费行为在个人信用风险识别中的信息含量研究[J].经济研究,2020,55:149-163.
WANG Z W,ZHOU C Y,LIAO L,et al.Informational content of consumption behavior in consumer credit risk evaluation[J].Econimocial Research,2020,55:149-163.
[2] 曹再辉,余东先,施进发,等.两层分类器模型应用于个人信用评估[J].控制工程,2019,26(12):2231-2234.
CAO Z H,YU D X,SHI J F,et al.The two-layer classifier model and its application to personal credit assessment[J].Control Engineering of China,2019,26(12):2231-2234.
[3] 张润驰,杜亚斌,薛立国,等.基于相似样本归并的大样本混合信用评估模型[J].管理科学学报,2018,21(7):77-90.
ZHANG R C,DU Y B,XUE L G,et al.A hybird large sample credit evaluation model based on combing similar samples[J].Journal of Management Sciences in China,2018,21(7):77-90.
[4] 张娟,张贝贝.基于Group-LASSO方法的广义半参数可加信用评分模型应用研究[J].数理统计与管理,2016,35(3):517-524.
ZHANG J,ZHANG B B.The application of generalized semi-parametirc addictive credit score model based on group-LASSO method[J].Journal of Applied Statistics and Management,2016,35(3):517-524.
[5] 马晓君,沙靖岚,牛雪琪.基于LightGBM算法的P2P项目信用评级模型的设计及应用[J].数量经济技术经济研究,2018,35(5):144-160.
MA X J,SHA J L,NIU X Q.An empirial study on the credit rating of P2P projects based on LightGBM algorithm[J].The Journal of Quantitative & Technical Economics,2018,35(5):144-160.
[6] 刘志惠,黄志刚,谢合亮.大数据风控有效吗?——基于统计评分卡与机器学习模型的对比分析[J].统计与信息论坛,2019,34(9):18-26.
LIU Z H,HUANG Z G,XIE H L.Is risk management with big data effective?—Comprison and analysis based on statistics score card and machine learning model[J].Journal of Statistics and Information,2019,34(9):18-26.
[7] LUO C C,WU D S,WU D X.A deep learning approach for credit scoring using credit default swaps[J].Engineering Applications of Artificial Intelligence,2017,65:465-470.
[8] KIM J Y,CHO S B.Predicting repayment of borrows in peer‐to‐peer social lending with deep dense convolutional network[J].Expert Systems,2019,36(4):e12403.
[9] 刘伟江,魏海,运天鹤.基于卷积神经网络的客户信用评估模型研究[J].数据分析与知识发现,2020,4(6):80-90.
LIU W J,WEI H,YUN T H.Evaluation model for customer credits based on convolutional neural network[J].Data Analysis and Knowledge Discovery,2020,4(6):80-90.
[10] 牛晓健,凌飞.基于组合学习的个人信用风险评估模型研究[J].复旦学报(自然科学版),2021,60(6):703-719.
NIU X J,LING F.Study on personal credit risk assessment model based on hybird learing[J].Journal of Fudan University(Natural Science),2021,60(6):703-719.
[11] WANG D,LIN J,CUI P,et al.A semi-supervised graph attentive network for financial fraud detection[C]//2019 IEEE International Conference on Data Mining(ICDM),2019:598-607.
[12] LEE J W,LEE W K,SOHN S Y.Graph convolutional network-based credit default prediction utilizing three types of virtual distances among borrowers[J].Expert Systems with Applications,2021,168:114411.
[13] 李思迪,郭炳晖,杨小博.基于图神经网络的金融征信研究[J].计算机科学,2021,48:85-90.
LI S D,GUO B H,YANG X B.Study on financial credit information based on graph neural network[J].Computer Science,2021,48(4):85-90.
[14] WANG D,ZHANG Z,ZHOU J,et al.Temporal-aware graph neural network for credit risk prediction[C]//Proceedings of the 2021 SIAM International Conference on Data Mining(SDM),2021:702-710.
[15] 马帅,刘建伟,左信.图神经网络综述[J].计算机研究与发展,2022,59(1):47-80.
MA S,LIU J W,ZUO X.Survey on graph neural network[J].Journal of Computer Research and Development,2022,59(1):47-80.
[16] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and deep locally connected networks on graphs[C]//2nd International Conference on Learning Representations,2014.
[17] HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems,2017.
[18] VELI?KOVI? P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//Proceedings of the International Conference on Learning Representations,2018.
[19] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008.
[20] WIGINTON J C.A note on the comparison of logit and discriminant models of consumer credit behavior[J].Journal of Financial Quantitative Analysis,1980,15(3):757-770.
[21] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
[22] CHEN T,GUESTRIN C.XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:785-794.
[23] KE G,MENG Q,FINLEY T,et al.LightGBM:a highly efficient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems,2017.
[24] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
[25] WOLPERT D H.Stacked generalization[J].Neural Networks,1992,5(2):241-259.
[26] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image-Net classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,2012.
[27] YING Z,BOURGEOIS D,YOU J,et al.GNNExplainer:generating explanations for graph neural networks[C]//Advances in Neural Information Processing Systems,2019.