LIU Chunxia, LI Chao, PAN Lihu, FAN Senlin. Improved Coal Mine Smoke and Fire Detection Algorithm of YOLOv5s[J]. Computer Engineering and Applications, 2023, 59(17): 286-294.
[1] ZHOU Z,SHI Y,GAO Z,et al.Wildfire smoke detection based on local extremal region segmentation and surveillance[J].Fire Safety Journal,2016,85:50-58.
[2] 耿庆田,于繁华,赵宏伟,等.基于颜色特征的火焰检测新算法[J].吉林大学学报(工学版),2014,44(6):1787-1792.
GENG Q T,YU F H,ZHAO H W,et al.A new algorithm for flame detection based on color features[J].Journal of Jilin University(Engineering Edition),2014,44(6):1787-1792.
[3] BU T,DEDEOLU Y,ENIS A,et al.Wavelet based real-time smoke detection in video[C]//European Signal Processing Conference,2005.
[4] CHENG Y H,WANG J.A motion image detection method based on the inter-frame difference method[J].Applied Mechanics & Materials,2014,490/491:1283-1286.
[5] TIAN H,LI W,LEI W,et al.A novel video-based smoke detection method using image separation[C]//2012 IEEE International Conference on Multimedia and Expo(ICME),2012.
[6] FRIZZI S,KAABI R.Convolutional neural network for video fire and smoke detection[C]//Conference of the IEEE Industrial Electronics Society,2016:877-882.
[7] YIN Z,WAN B,YUAN F,et al.A deep normalization and convolutional neural network for image smoke detection[J].IEEE Access,2017,5:18429-18438.
[8] FAISAL D A,NUR G R.Real time fire detection using color probability segmentation and DenseNet model for classifier[J].International Journal of Advanced Computer Science and Applications(IJACSA),2022,13(9):300-305.
[9] HUANG G,LIU Z,LAURENS V,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017.
[10] 回天,哈力旦·阿布都热依木,杜晗.结合Faster R-CNN的多类型火焰检测[J].中国图象图形学报,2019,24(1):73-83.
HUI T,HALIDAN A,DU H.Multi-type flame detection combined with Faster R-CNN[J].Journal of Image and Graphics,2019,24(1):73-83.
[11] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[12] 卢鹏,赵亚琴,陈越,等.复杂背景环境下基于SSD_ MobileNet深度学习模型的火焰图像识别研究[J].火灾科学,2020,29(3):142-149.
LU P,ZHAO Y Q,CHEN Y,et al.Research on flame image recognition based on SSD_MobileNet deep learning model in complex background environment[J].Fire Safety Science,2020,29(3):142-149.
[13] HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:1314-1324.
[14] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[15] 王斌,李靖,赵康,等.面向火焰快速检测的轻量化深度网络研究[J].计算机工程与应用,2022,58(17):256-262.
WANG B,LI J,ZHAO K,et al.Research on lightweight deep network for fast fire flame detection[J].Computer Engineering and Applications,2022,58(17):256-262.
[16] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[17] HAN K,WANG Y,TIAN Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589.
[18] ZHANG Q L,YANG Y B.Sa-net:shuffle attention for deep convolutional neural networks[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2021:2235-2239.
[19] GEVORGYAN Z.SIoU loss:more powerful learning for bounding box regression[J].arXiv:2205.12740,2022.
[20] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:12993-13000.
[21] SRINIVAS A,LIN T Y.Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:16519-16529.
[22] MA N,ZHANG X,ZHENG H T.Shufflenet v2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:116-131.
[23] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[24] YANG L,ZHANG R Y,LI L,et al.SimAM:a simple,parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning,2021.
[25] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13713-13722.
[26] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19.
[27] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020.
[28] LIU Y,SHAO Z,HOFFMANN N.Global attention mechanism:retain information to enhance channel-spatial interactions[J].arXiv:2112.05561,2021.
[29] HE J,ERFANI S,MA X,et al.Alpha-IoU:a family of power intersection over union losses for bounding box regression[C]//Advances in Neural Information Processing Systems,2021:20230-20242.
[30] ZHANG Y F,REN W,ZHANG Z,et al.Focal and efficient IOU loss for accurate bounding box regression[J].Neurocomputing,2022,506:146-157.
[31] GE Z,LIU S,WANG F,et al.Yolox:exceeding yolo series in 2021[J].arXiv:2107.08430,2021.
[32] LI C,LI L,JIANG H,et al.YOLOv6:a single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022.
[33] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv:2207.02696,2022.