Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (10): 48-64.DOI: 10.3778/j.issn.1002-8331.2211-0133
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Jian, DU Jianqiang, ZHU Yanchen, GUO Yongkun
Online:
2023-05-15
Published:
2023-05-15
李建,杜建强,朱彦陈,郭永坤
LI Jian, DU Jianqiang, ZHU Yanchen, GUO Yongkun. Survey of Transformer-Based Object Detection Algorithms[J]. Computer Engineering and Applications, 2023, 59(10): 48-64.
李建, 杜建强, 朱彦陈, 郭永坤. 基于Transformer的目标检测算法综述[J]. 计算机工程与应用, 2023, 59(10): 48-64.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2211-0133
[1] 张璧程.基于区域卷积神经网络的目标检测与识别算法[D].成都:电子科技大学,2020. ZHANG B C.A research of target detection and recognition algorithm with region-based convolutional neural network[D].Chengdu:University of Electronic Science and Technology of China,2020. [2] 李柯泉,陈燕,刘佳晨,等.基于深度学习的目标检测算法综述[J].计算机工程,2022,48(7):1-12. LI K Q,CHEN Y,LIU J C,et al.Survey of deep learning-based object detection algorithms[J].Computer Engineering,2022,48(7):1-12. [3] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [4] 刘泽凌.基于卷积神经网络的车道线检测与车道保持控制研究[D].哈尔滨:哈尔滨工业大学,2021. LIU Z L.Research on lane line detection based on convolutional neural network and lane keeping control algorithm[D].Harbin:Harbin Institute of Technology,2021. [5] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].arXiv:1706.03762,2017. [6] CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//16th European Conference on Computer Vision.Cham:Springer,2020:213-229. [7] BEAL J,KIM E,TZENG E,et al.Toward transformer-based object detection[J].arXiv:2012.09958,2020. [8] 刘文婷,卢新明.基于计算机视觉的Transformer研究进展[J].计算机工程与应用,2022,58(6):1-16. LIU W T,LU X M.Research progress of Transformer based on computer vision[J].Computer Engineering and Applications,2022,58(6):1-16. [9] 曹家乐,李亚利,孙汉卿,等.基于深度学习的视觉目标检测技术综述[J].中国图象图形学报,2022,27(6):1697-1722. CAO J L,LI Y L,SUN H Q,et al.A survey on deep learning based visual object detection[J].Journal of Image and Graphics,2022,27(6):1697-1722. [10] 刘洋,战荫伟.基于深度学习的小目标检测算法综述[J].计算机工程与应用,2021,57(2):37-48. LIU Y,ZHAN Y W.Survey of small object detection algorithms based on deep learning[J].Computer Engineering and Applications,2021,57(2):37-48. [11] ITO S,CHEN P,COMTE P,et al.Fabrication of screen printing pastes from TiO2 powders for dye sensitised solar cells[J].Progress in Photovoltaics:Research and Applications,2007,15(7):603-612. [12] MARRIS H,DEBOUDT K,AUGUSTIM P,et al.Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes[J].Science of the Total Environment,2012,427:126-138. [13] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//13th European Conference on Computer Vision.Cham:Springer,2014:740-755. [14] KRASIN I,DUERIG T,ALLDRIN N,et al.OpenImages:a public dataset for large-scale multi-label and multi-class image classification[DB/OL].(2017)[2022-10-27].https://github.com/openimages. [15] XIA G S,BAI X,DING J,et al.DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:3974-3983. [16] LOH Y P,CHAN C S.Getting to know low-light images with the exclusively dark dataset[J].Computer Vision and Image Understanding,2019,178:30-42. [17] 田永林,王雨桐,王建功,等.视觉Transformer研究的关键问题:现状及展望[J].自动化学报,2022,48(4):957-979. TIAN Y L,WANG Y T,WANG J G,et al.Key problems and progress of vision Transformers:the state of the art and prospects[J].Acta Automatica Sinica,2022,48(4):957-979. [18] ZHU Z,LIANG D,ZHANG S,et al.Traffic-sign detection and classification in the wild[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:2110-2118. [19] YU X,GONG Y,JIANG N,et al.Scale match for tiny person detetion[J].arXiv:1912.10664,2019. [20] SHAO S,ZHAO Z,LI B,et al.CrowdHuman:a benchmark for detecting human in a crowd[J].arXiv:1805.00123,2018. [21] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,Italy,2017:2980-2988. [22] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [23] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [24] LIU Z,LIN Y,CAO Y,et al.Swin Transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:10012-10022. [25] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [26] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [27] LIU Z,HU H,LIN Y,et al.Swin Transformer V2:scaling up capacity and resolution[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:12009-12019. [28] WANG W,YAO L,CHEN L,et al.CrossFormer:a versatile vision transformer hinging on cross-scale attention[J].arXiv:2108.00154,2021. [29] WANG W,XIE E,LI X,et al.Pyramid vision transformer:a versatile backbone for dense prediction without convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:568-578. [30] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:2999-3007. [31] ZHOU D,KANG B,JIN X,et al.DeepVit:towards deeper vision transformer[J].arXiv:2103.11886,2021. [32] GONG C,WANG D,LI M,et al.Improve vision transformers training by suppressing over-smoothing[J].arXiv:2104.12753,2021. [33] ZHOU D Q,SHI Y J,KANG B Y,et al.Refiner:refining self-attention for vision transformers[J].arXiv:2106.03714,2021. [34] ZHOU X Y,ZHUO J C,KRAHENBUHL P.Bottom-up object detection by grouping extreme and center points[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:850-859. [35] ZHOU X,KOLTUN V,KRHENBüHL P.Probabilistic two-stage detection[J].arXiv:2103.07461,2021. [36] CHI C,WEI F,HU H.RelationNet++:bridging visual representations for object detection via transformer decoder[C]//Advances in Neural Information Processing Systems 33,2020:13564-13574. [37] TOUVRON H,CORD M,DOUZE M,et al.Training data-efficient image transformers & distillation through attention[C]//Proceedings of the 38th International Conference on Machine Learning,2021:10347-10357. [38] GUO J,HAN K,WU H,et al.CMT:convolutional neural networks meet vision transformers[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:12175-12185. [39] MEHTA S,RASTEGARI M.MobileViT:light-weight,general-purpose,and mobile-friendly vision transformer[J].arXiv:2110.02178,2021. [40] LEE Y,KIM J,WILLETTE J,et al.MPViT:multi-path vision transformer for dense prediction[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:7287-7296. [41] PENG Z,HUANG W,GU S,et al.Conformer:local features coupling global representations for visual recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:367-376. [42] CHEN Y,DAI X,CHEN D,et al.Mobile-Former:bridging MobileNet and transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:5270-5279. [43] PAN X,GE C,LU R,et al.On the integration of self-attention and convolution[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:815-825. [44] SONG H,SUN D,CHUN S,et al.ViDT:an efficient and effective fully transformer-based object detector[J].arXiv:2110.03921,2021. [45] CAI Z,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:6154-6162. [46] SUN P,ZHANG R,JIANG Y,et al.Sparse R-CNN:end-to-end object detection with learnable proposals[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:14454-14463. [47] DING L,LI H,HU C,et al.AlexNet feature extraction and multi-kernel learning for object-oriented classification[J].International Archives of the Photogrammetry,Remote Sen- sing and Spatial Information Sciences,2018,42:277-281. [48] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [49] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [50] YAO Z,AI J,LI B,et al.Efficient DETR:improving end-to-end object detector with dense prior[J].arXiv:2104. 01318,2021. [51] ZHU X,SU W,LU L,et al.Deformable DETR:deformable transformers for end-to-end object detection[J].arXiv:2010.04159,2020. [52] SUN Z,CAO S,YANG Y,et al.Rethinking transformer-based set prediction for object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:3611-3620. [53] ZHANG G,LUO Z,YU Y,et al.Accelerating DETR convergence via semantic-aligned matching[J].arXiv:2203. 06883,2022. [54] MENG D,CHEN X,FAN Z,et al.Conditional DETR for fast training convergence[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:3651-3660. [55] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:764-773. [56] LIU S,LI F,ZHANG H,et al.DAB-DETR:dynamic anchor boxes are better queries for DETR[J].arXiv:2201.12329,2022. [57] GAO Z,WANG L,HAN B,et al.AdaMixer:a fast-converging query-based object detector[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:5364-5373. [58] LI F,ZHANG H,LIU S,et al.DN-DETR:accelerate DETR training by introducing query denoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:13619-13627. [59] HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:9729-9738. [60] NIIZUMI D,TAKEUCHI D,OHISHI Y,et al.BYOL for audio:self-supervised learning for general-purpose audio representation[C]//2021 International Joint Conference on Neural Networks,2021:1-8. [61] DAI Z,CAI B,LIN Y,et al.UP-DETR:unsupervised pre-training for object detection with transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:1601-1610. [62] WANG Y,ZHANG X,YANG T,et al.Anchor DETR:query design for Transformer-based object detection[J].arXiv:2109.07107,2021. [63] ZHENG M,GAO P,ZHANG R,et al.End-to-end object detection with adaptive clustering transformer[J].arXiv:2011.09315,2020. [64] WANG T,YUAN L,CHEN Y,et al.PNP-DETR:towards efficient visual analysis with transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:4661-4670. [65] ROH B,SHIN J W,SHIN W,et al.Sparse DETR:efficient end-to-end object detection with learnable sparsity[J].arXiv:2111.14330,2021. [66] GUPTA A,NARAYAN S,JOSEPH K J,et al.OW-DETR:open-world detection transformer[J].arXiv:2112.01513,2021. [67] JOSEPH K J,KHAN S,KHAN F S,et al.Towards open world object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:5830-5840. [68] ZHOU Z,ZHAO X,WANG Y,et al.CenterFormer:center-based transformer for 3D object detection[C]//17th European Conference on Computer Vision.Cham:Springer,2022:496-513. [69] DENG S,LIANG Z,SUN L,et al.VISTA:boosting 3D object detection via dual cross-view SpaTial attention[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:8448-8457. [70] WANG H,TANG J,LIU X,et al.PTSEFormer:progressive temporal-spatial enhanced TransFormer towards video object detection[C]//17th European Conference on Computer Vision.Cham:Springer,2022:732-747. [71] CHENG X,XIONG H,FAN D P,et al.Implicit motion handling for video camouflaged object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:13864-13873. [72] 宁欣,田伟娟,于丽娜,等.面向小目标和遮挡目标检测的脑启发CIRA-DETR全推理方法[J].计算机学报,2022,45(10):2080-2092. NING X,TIAN W J,YU L N,et al.Brain-inspired CIRA-DETR full inference model for small and occluded object detection[J].Chinese Journal of Computers,2022,45(10):2080-2092. [73] XI E,BING S,JIN Y.Capsule network performance on complex data[J].arXiv:1712.03480,2017. [74] 周静,胡怡宇,胡成玉,等.基于点云补全和多分辨Transformer的弱感知目标检测方法[J/OL].计算机应用 (2022-10-12)[2022-12-10].http://kns.cnki.net/kcms/detail/51.1307.TP.20221011.1028.002.html. ZHOU J,HU Y Y,HU C Y,et al.Weakly perceived object detection method based on point cloud completion and multi-resolution Transformer[J/OL].Journal of Computer Applications(2022-10-12)[2022-12-10].http://kns.cnki.net/kcms/detail/51.1307.TP.20221011.1028.002.html. [75] KONG Q,WU Y,YUAN C,et al.CT-CAD:context-aware transformers for end-to-end chest abnormality detection on X-rays[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine,2021:1385-1388. [76] MA X,LUO G,WANG W,et al.Transformer network for significant stenosis detection in CCTA of coronary arteries[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:516-525. [77] 谢光达,李洋,曲洪权,等.基于改进Transformer的小目标车辆精确检测算法[J].激光与光电子学进展,2022,59(18):364-371. XIE G D,LI Y,QU H Q,et al.Small target accurate vehicle detection algorithm based on improved Transformer[J].Laser & Optoelectronics Progress,2022,59(18):364-371. [78] 楼哲航,罗素云.基于YOLOX和Swin Transformer的车载红外目标检测[J].红外技术,2022,44(11):1167-1175. LOU Z H,LUO S Y.Vehicle infrared target detection based on YOLOX and Swin Transformer[J].Infrared Technology,2022,44(11):1167-1175. [79] 林文龙,阿里甫·库尔班,陈一潇,等.面向遥感影像目标检测的ACFEM-RetinaNet算法[J/OL].计算机工程与应用(2022-11-26)[2022-12-10].http://kns.cnki.net/kcms/detail/11.2127.TP.20221125.1132.018.html. LIN W L,ALIFU·KUERBAN,CHEN Y X,et al.ACFEM-RetinaNet algorithm for remote sensing image target detection[J/OL].Computer Engineering and Applications(2022-11-26)[2022-12-10].http://kns.cnki.net/kcms/detail/11.2127.TP.20221125.1132.018.html.. [80] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFS[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [81] XIE E,WANG W,YU Z,et al.SegFormer:simple and efficient design for semantic segmentation with transformers[C]//Advances in Neural Information Processing Systems 34,2021:12077-12090. [82] 余同瑞,金冉,韩晓臻,等.自然语言处理预训练模型的研究综述[J].计算机工程与应用,2020,56(23):12-22. YU T R,JIN R,HAN X Z,et al.Review of pre-training models for natural language processing[J].Computer Engineering and Applications,2020,56(23):12-22. [83] WANG J,CHEN K,YANG S,et al.Region proposal by guided anchoring[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:2965-2974. [84] MAHTO P,GARG P,SETH P,et al.Refining YOLOv4 for vehicle detection[J].International Journal of Advanced Research in Engineering and Technology,2020,11(5):409-419. [85] OCHER G.YOLOv5[EB/OL].(2020-08-10)[2022-10-18].https://github.com/ultralytics/yolov5. [86] LI Z,ZHOU F.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [87] TIAN Z,SHEN C,CHEN H,et al.FCOS:fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision,2019:9627-9636. [88] DONG Z,LI G,LIAO Y,et al.CentripetalNet:pursuing high-quality keypoint pairs for object detection[J].arXiv:2003.09119,2020. [89] BAO W,YANG Y,LIANG D,et al.Multi-residual module stacked hourglass networks for human pose estimation[J].Journal of Beijing Institute of Technology,2020,29(1):110-119. [90] CHEN Q,WANG Y,YANG T,et al.You only look one-level feature[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13039-13048. [91] ISLAM M A,JIA S,BRUCE N D B.How much position information do convolutional neural networks encode?[J].arXiv:2001.08248,2020. [92] 曾武,朱恒亮,邢树礼,等.显著性检测引导的图像数据增强方法[J/OL].图学学报(2022-09-14)[2022-10-27].http://kns.cnki.net/kcms/detail/10.1034.T.20220913.1702.002.html. ZENG W,ZHU H L,XING S L,et al.Saliency detection-guided for image data augmentation[J/OL].Journal of Graphics(2022-09-14)[2022-10-27].http://kns.cnki.net/kcms/detail/10.1034.T.20220913.1702.002.html. [93] 赵凯琳,靳小龙,王元卓.小样本学习研究综述[J].软件学报,2021,32(2):349-369. ZHAO K L,JIN X L,WANG Y Z.Survey on few-shot learning[J].Journal of Software,2021,32(2):349-369. [94] 张艳,张明路,吕晓玲,等.深度学习小目标检测算法研究综述[J].计算机工程与应用,2022,58(15):1-17. ZHANG Y,ZHANG M L,LYU X L,et al.Review of research on small target detection based on deep learning[J].Computer Engineering and Applications,2022,58(15):1-17. [95] TANG C,ZHAO Y,WANG G,et al.Sparse MLP for image recognition:is self-attention really necessary?[J].arXiv:2109.05422,2021. [96] WANG G,ZHAO Y,TANG C,et al.When shift operation meets vision transformer:an extremely simple alternative to attention mechanism[J].arXiv:2201.10801,2022. [97] RADFORD A,KIM J W,HALLACY C,et al.Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning,2021:8748-8763. [98] RAMESH A,PAVLOV M,GOH G,et al.Zero-shot text-to-image generation[C]//Proceedings of the 38th International Conference on Machine Learning,2021:8821-8831. |
[1] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[2] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[3] | CAI Zhengyi, ZHAO Jieyu, ZHU Feng. Single-Stage Object Detection with Fusion of Point Cloud and Image Feature [J]. Computer Engineering and Applications, 2023, 59(9): 140-149. |
[4] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[5] | XIE Chunhui, WU Jinming, XU Huaiyu. Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Image [J]. Computer Engineering and Applications, 2023, 59(9): 198-206. |
[6] | LI Wenju, CHU Wanghui, CUI Liu, SU Pan, ZHANG Gan. 3D Object Detection Method Combining on Graph Sampling and Graph Attention [J]. Computer Engineering and Applications, 2023, 59(9): 237-244. |
[7] | ZHANG Ting, ZHANG Xingzhong, WANG Huimin, YANG Gang, WANG Dawei. 3D Object Detection in Substation Scene Based on Graph Neural Network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336. |
[8] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[9] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[10] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[11] | SHI Lei, JI Qingyu, CHEN Qingwei, ZHAO Hengyi, ZHANG Junxing. Review of Research on Application of Vision Transformer in Medical Image Analysis [J]. Computer Engineering and Applications, 2023, 59(8): 41-55. |
[12] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[13] | JI Ruirui, XIE Yuhui, LUO Fengkai, MEI Yuan. Face Recognition Method Based on Improved Visual Transformer [J]. Computer Engineering and Applications, 2023, 59(8): 117-126. |
[14] | ZHANG Zhaoyang, ZHANG Shang, WANG Hengtao, RAN Xiukang. Multi-Head Attention Detection of Small Targets in Remote Sensing at Multiple Scales [J]. Computer Engineering and Applications, 2023, 59(8): 227-238. |
[15] | LI Abiao, GUO Hao, QI Chang, AN Jubai. Dense Object Detection in Remote Sensing Images Under Complex Background [J]. Computer Engineering and Applications, 2023, 59(8): 247-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||