[1] 2022年全国农作物重大病虫害发生趋势预报[J].中国植保导刊,2022,42(4):107-108.
Forecast of the occurrence trend of major crop diseases and insect pests in 2022[J].China Plant Protection, 2022,42(4):107-108.
[2] 杭立,车进,宋培源,等.基于机器学习和图像处理技术的病虫害预测[J].西南大学学报(自然科学版),2020,42(1):134-141.
HANG L,CHE J,SONG P Y,et al.Studies on pest prediction based on machine learning and image processing technologies[J].Journal of Southwest University(Natural Science),2020,42(1):134-141.
[3] 王佳.计算机视觉在香芋病害检测中的应用研究[J].农机化研究,2020,42(8):241-244.
WANG J.The applied research of computer vision in the taro disease detection[J].Journal of Agricultural Mechanization Research,2020,42(8):241-244.
[4] NETTLETON D F,KATSANTONIS D,KALAITZIDIS A,et al.Predicting rice blast disease:machine learning versus process-based models[J].BMC Bioinformatics,2019,20(1):514.
[5] 翟肇裕,曹益飞,徐焕良,等.农作物病虫害识别关键技术研究综述[J].农业机械学报,2021,52(7):1-18.
ZHAI Z Y,CAO Y F,XU H L,et al.Review of key techniques for crop disease and pest detection[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(7):1-18.
[6] 李军,李明.改进多尺度卷积神经网络的人脸表情识别研究[J].重庆邮电大学学报(自然科学版),2022,34(2):201-207.
LI J,LI M.Research on facial expression recognition based on improved multi-scale convolutional neural networks[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2022,34(2):201-207.
[7] 徐兢成,王丽华.基于AlexNet网络的交通标志识别方法[J].无线电工程,2022,52(3):470-475.
XU J C,WANG L H.Traffic sign recognition method based on AlexNet network[J].Radio Engineering,2022,52(3):470-475.
[8] XU D,WU Y.Improved YOLO-V3 with DenseNet for multi-scale remote sensing target detection[J].Sensors,2020,20(15):4276.
[9] 黄凯文,凌六一,王成军,等.基于改进YOLO和DeepSORT的实时多目标跟踪算法[J].电子测量技术,2022,45(6):7-13.
HUANG K W,LING L Y,WANG C J,et al.Real-time multiple object tracking algorithm based on improved YOLO and DeepSORT[J].Electronic Measurement Technology,2022,45(6):7-13.
[10] 董美琳,任安虎.基于深度学习的高速公路交通事件检测研究[J].国外电子测量技术,2021,40(10):108-116.
DONG M L,REN A H.Research on highway traffic incident detection based on deep learning[J].Foreign Electronic Measurement Technology,2021,40(10):108-116.
[11] 贾少鹏,高红菊,杭潇.基于深度学习的农作物病虫害图像识别技术研究进展[J].农业机械学报,2019,50(S1):313-317.
JIA S P,GAO H J,HANG X.Research progress on image recognition technology of crop pests and diseases based on deep learning[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(S1):313-317.
[12] TURKOGLU M,HANBAY D.Plant disease and pest detection using deep learning-based features[J].Turkish Journal of Electrical Engineering & Computer Sciences,2019,27(3):1636-1651.
[13] TURKOGLU M,HANBAY D,SENGUR A.Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests[J].Journal of Ambient Intelligence and Humanized Computing,2022,13(7):3335-3345.
[14] MOHANTY S P,HUGHES D P,SALATHé M.Using deep learning for image-based plant disease detection[J].Frontiers in Plant Science,2016,7:1419.
[15] BRAHIMI M,BOUKHALFA K,MOUSSAOUI A.Deep learning for tomato diseases:classification and symptoms visualization[J].Applied Artificial Intelligence,2017,31(4):299-315.
[16] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image-Net classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[17] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceeding of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9.
[18] FUENTES A,YOON S,KIM S,et al.A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J].Sensors,2017,17(9):2022.
[19] 黄英来,艾昕.改进残差网络在玉米叶片病害图像的分类研究[J].计算机工程与应用,2021,57(23):178-184.
HUANG Y L,AI X.Research on classification of corn leaf disease image by improved residual network[J].Computer Engineering and Applications,2021,57(23):178-184.
[20] 方晨晨,石繁槐.基于改进深度残差网络的番茄病害图像识别[J].计算机应用,2020,40(S1):203-208.
FANG C C,SHI F H.Image recognition of tomato diseases based on improved deep residual network[J].Journal of Computer Applications,2020,40(S1):203-208.
[21] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[22] SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2018:4510-4520.
[23] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[24] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2020:11531-11539.
[25] CAO Y,XU J,LIN S,et al.Global context networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023:45(6):6881-6895.