Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (3): 280-291.DOI: 10.3778/j.issn.1002-8331.2209-0204
• Network, Communication and Security • Previous Articles Next Articles
JIN Yuyao, ZHANG Xiaomei, WANG Yajie
Online:
2024-02-01
Published:
2024-02-01
金瑜瑶,张晓梅,王亚杰
JIN Yuyao, ZHANG Xiaomei, WANG Yajie. Multi-Scene Continuous Authentication Based on Attention Module for Mobile Devices[J]. Computer Engineering and Applications, 2024, 60(3): 280-291.
金瑜瑶, 张晓梅, 王亚杰. 基于注意力模块的移动设备多场景持续身份认证[J]. 计算机工程与应用, 2024, 60(3): 280-291.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2209-0204
[1] DATA.AI.2022年移动市场报告[EB/OL].[2022-06-11]. https://www.data.ai/cn/insights/market-data/state-of-mobile-2022/. Data.ai.2022 Mobile market report[EB/OL].[2022-06-11]. https://www.data.ai/cn/insights/market-data/state-of-mobile-2022/. [2] 厍向阳, 刘巧, 叶鸥.融合LeNet-5和Siamese神经网络模型的人脸认证算法研究[J]. 计算机工程与应用, 2020, 56(15): 215-220. SHE X Y, LIU Q, YE O. Research on face verification algorithm based on LeNet-5 and Siamese neural network model[J]. Computer Engineering and Applications, 2020, 56(15): 215-220. [3] 贺康, 李梦醒, 赵健, 等. 基于 Fingercode和同态加密的指纹认证方案[J].计算机工程与应用, 2013, 49(24): 78-82. HE K, LI M X, ZHAO J, et al. Fingercode based remote fingerprint authentication scheme using homomorphic encryption[J]. Computer Engineering and Applications, 2013, 49(24): 78-82. [4] ALROWAILY K, ALRUBAIAN M, MIRZA D A. Smart phones security-touch screen smudge attack[C]//Proceedings of the International Conference on Security and Management, 2012: 1-2. [5] TSOKKIS P, STAVROU E. A password generator tool to increase users’ awareness on bad password construction strategies[C]//2018 International Symposium on Networks, Computers and Communications (ISNCC). Rome, Italy: IEEE, 2018: 1-5. [6] LIU X, LI Y, DENG R H, et al. When human cognitive modeling meets PINs: user-independent inter-keystroke timing attacks[J]. Computers & Security, 2019, 80(1): 90-107. [7] MARKERT P, BAILEY D V, GOLLA M, et al. This PIN can be easily guessed: analyzing the security of smartphone unlock PINs[C]//2020 IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA: IEEE, 2020: 286-303. [8] SYED Z, HELMICK J, BANERJEE S, et al. Effect of user posture and device size on the performance of touch-based authentication systems[C]//IEEE International Symposium on High Assurance Systems Engineering. Daytona Beach Shores, FL, USA: IEEE, 2015: 10-17. [9] WU J, ISHWAR P, KONRAD J. The value of posture, build and dynamics in gesture-based user authentication.[C]//IEEE International Joint Conference on Biometrics. Clearwater, FL, USA: IEEE, 2014: 1-8. [10] TUTKUVIENE J, SCHIEFENHOEVEL W. Laterality of handgrip strength: age-and physical training-related changes in Lithuanian schoolchildren and conscripts[J]. Annals of the New York Academy of Sciences, 2013, 1288(1): 124-134. [11] KUBOTA H, DEMURA S, KAWABATA H. Laterality and age-level differences between young women and elderly women in controlled force exertion (CFE)[J]. Archives of Gerontology and Geriatrics, 2012, 54(2): 68-72. [12] TAHIR H, KHAN M S, TARIQ M O. Performance analysis and comparison of Faster R-CNN, Mask R-CNN and ResNet50 for the detection and counting of vehicles[C]//2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS).Greater Noida, India: IEEE, 2021: 587-594 [13] RAO G, ZHANG Y, ZHANG L, et al. MGL-CNN: a hierarchical posts representations model for identifying depressed individuals in online forums[J]. IEEE Access, 2020, 8(1): 32395-32403. [14] LIN C Y, LI Y, ZHANG K, et al. CNN-based super resolution for video coding using decoded information[C]//International Conference on Visual Communications and Image Processing. Munich, Germany: IEEE, 2021: 1-5. [15] MAYORGA P, VALDEZ J A, DRUZGALSKI C, et al. CNN networks to classify cardiopulmonary signals[C]//2022 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE). Panama City, Panama: IEEE, 2022: 1-4. [16] YANG Y, GUO B, WANG Z, et al. Behave sense: continuous authentication for security-sensitive mobile apps using behavioral biometrics[J]. Ad Hoc Networks, 2019, 84(3): 9-18. [17] EL-SOUD M, GABER T, ALFAYEZ F, et al. Implicit authentication method for smartphone users based on rank aggregation and random forest[J]. Alexandria Engineering Journal, 2021, 60(1): 273-283. [18] 芦效峰, 张胜飞, 伊胜伟. 基于CNN和RNN的自由文本击键模式持续身份认证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1072-1078. LU X F, ZHANG S F, YI S W. Free-text keystroke continuous authentication using CNN and RNN[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1072-1078. [19] SHIRAGA K, MAKIHARA Y, MURAMATSU D, et al. GEINet: view-invariant gait recognition using a convolutional neural network[C]//Proceedings of the 2016 International Conference on Biometrics (ICB). Halmstad, Sweden: IEEE, 2016: 1-8. [20] MATTEO G, MICHELE R. IDNet: smartphone-based gait recognition with convolutional neural networks[J]. Pattern Recognition, 2018, 74(1): 25-37. [21] ZHAO Y, ZHOU S. Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network[J]. Sensors, 2017, 17(3): 1-20. [22] TANG C, PHOHA V V. An empirical evaluation of activities and classifiers for user identification on smartphones[C]//2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS). Niagara Falls, NY, USA: IEEE, 2016: 1-8. [23] 王欣, 王美丽, 边党伟. 融合MobileNetv2和注意力机制的轻量级人像分割算法[J].计算机工程与应用, 2022, 58(7): 220-228. WANG X, WANG M L, BIAN D W. Algorithm for portrait segmentation combined with MobileNetv2 and attention mechanism[J]. Computer Engineering and Applications, 2022, 58(7): 220-228. [24] 王玲敏, 段军, 辛立伟.引入注意力机制的YOLOv5安全帽佩戴检测方法[J].计算机工程与应用, 2022, 58(9): 303-312. WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312. [25] LI N, WANG Z. Spatial attention guided residual attention network for hyperspectral image classification[J]. IEEE Access, 2022, 10: 9830-9847. [26] 杜先君, 巩彬, 余萍, 等. 基于CBAM-CNN的模拟电路故障诊断[J]. 控制与决策, 2022, 37(10): 2609-2618. DU X J, GONG B, YU P, et al. CBAM-CNN based analog circuit fault diagnosis[J]. Control and Decision, 2022, 37(10): 2609-2618. [27] 许文鑫, 张敏, 莫继良, 等. 基于CBAM-CNN的高速列车制动闸片摩擦块偏磨状态监控[J]. 摩擦学学报, 2022, 42(6): 1226-1236. XU W X, ZHANG M, MO J L, et al. Monitoring of partial wear state of brake sluice friction block of high speed train based on CBAM-CNN[J]. Tribology, 2022, 42(6): 1226-1236. [28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 3-19. [29] JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7132-7141. [30] YANG Q, PENG G, NGUYEN D T, et al. A multimodal data set for evaluating continuous authentication performance in smartphones[C]//Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. New York, NY, USA: Association for Computing Machinery, 2014: 358-359. [31] BüCH H. Continuous authentication using inertial-sensors of smartphones and deep learning[D]. Stuttgart, Germany: University of Media Stuttgart, 2019. [32] SITOVáZ, ?EDěNKA J, YANG Q, et al. HMOG: new behavioral biometric features for continuous authentication of smartphone users[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(5): 877-892. [33] CENTENO M P, GUAN Y, MOORSEL A V. Mobile based continuous authentication using deep features[C]//Proceedings of the 2nd International Workshop on Embedded and Mobile Deep Learning. New York, NY, USA: Association for Computing Machinery, 2018: 19-24. [34] CHAO S. Performance analysis of multi-motion sensor behavior for active smartphone authentication[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(1): 48-62. [35] LI Y, HU H, GANG Z, et al. Sensor-based continuous authentication using cost-effective kernel ridge regression[J]. IEEE Access, 2018, 6: 32554-32565. [36] LI Y, HU H, ZHOU G. Using data augmentation in continuous authentication on smartphones[J]. IEEE Internet of Things Journal, 2018, 6(1): 628-640. |
[1] | CHEN Lifang, LUO Shiyong. Multi-Scale Liver Tumor Segmentation Algorithm by Fusing Convolution and Transformer [J]. Computer Engineering and Applications, 2024, 60(4): 270-279. |
[2] | CHANG Jian, CHEN Hongfu, WANG Bingbing. Underwater Image Enhancement Based on Parallel Guidance of Transformer and CNN [J]. Computer Engineering and Applications, 2024, 60(4): 280-288. |
[3] | WANG Yonggui, ZOU Heyu. Multi-Task Joint Learning for Graph Convolutional Neural Network Recommendations [J]. Computer Engineering and Applications, 2024, 60(4): 306-314. |
[4] | ZHANG Peng, XIE Li, YANG Hailin. Lightweight Network ICA-Res2Net for Cervical Cell Classification [J]. Computer Engineering and Applications, 2024, 60(3): 187-195. |
[5] | ZHANG Xiaoqing, XIAO Zunjie, ZHAO Yuhang, WU Xiao, Risa Higashita, LIU Jiang. Clinical Feature Recalibration Attention Network for Cataract Recognition [J]. Computer Engineering and Applications, 2024, 60(3): 321-330. |
[6] | WANG Changhai, LIANG Hui, WANG Bo, CUI Xiaoxu. Graph Convolutional Index Trend Prediction Based on Correlation of Index Constituent Stocks [J]. Computer Engineering and Applications, 2023, 59(9): 319-328. |
[7] | YANG Chongluo, SHENG Long, WEI Zhongcheng, WANG Wei. Research on COVID-19 Text Entity Relation Extraction and Dataset Construction Methods [J]. Computer Engineering and Applications, 2023, 59(8): 97-104. |
[8] | LONG Qigang, WANG Jinming, LIANG Yan, SONG Jie, FENG Yadong, LI Peng, ZHAO Lingxiao. Classification of Esophageal Lesions in Endoscopic Images Using Convolutional Neural Network [J]. Computer Engineering and Applications, 2023, 59(7): 118-125. |
[9] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
[10] | YANG Chunxia, MA Wenwen, CHEN Qigang, GUI Qiang. Multi-Label Text Classification Model Combining CNN-SAM and GAT [J]. Computer Engineering and Applications, 2023, 59(5): 106-114. |
[11] | SUN Xiaohu, YU Axiang, SHEN Xulin, LI Hongjun. Abnormal Behavior Recognition Based on Hybrid Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(5): 140-147. |
[12] | QIN Qing, WANG Weixing, LIU Qinghua, MENG Deqing. Classical Ethnic Dance Action Recognition Based on Skeleton Information [J]. Computer Engineering and Applications, 2023, 59(5): 281-288. |
[13] | YANG Yuhang, LIN Min, WANG Changying, ZHONG Yiwen. Dual-Path Network Model Fusing Frequency-Domain Features to Diagnose COVID-19 [J]. Computer Engineering and Applications, 2023, 59(5): 321-327. |
[14] | DU Yuzheng, CAO Hui, NIE Yongqi, WEI Dejian, FENG Yanyan. Application of Deep Learning in Classification and Diagnosis of Alzheimer's Disease [J]. Computer Engineering and Applications, 2023, 59(3): 49-65. |
[15] | ZHONG Zhipeng, WANG Hailong, SU Guibin, LIU Lin, PEI Dongmei. Music Emotion Recognition Fusion on CNN-BiLSTM and Self-Attention Model [J]. Computer Engineering and Applications, 2023, 59(3): 94-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||