Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (7): 31-50.DOI: 10.3778/j.issn.1002-8331.2208-0383
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Jinchen, LI Yanling, GE Fengpei, LIN Min
Online:
2023-04-01
Published:
2023-04-01
李瑾晨,李艳玲,葛凤培,林民
LI Jinchen, LI Yanling, GE Fengpei, LIN Min. Survey of Research on Intelligent System for Legal Domain[J]. Computer Engineering and Applications, 2023, 59(7): 31-50.
李瑾晨, 李艳玲, 葛凤培, 林民. 面向法律领域的智能系统研究综述[J]. 计算机工程与应用, 2023, 59(7): 31-50.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2208-0383
[1] ZHONG H,XIAO C,TU C,et al.JEC-QA:a legal-domain question answering dataset[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:9701-9708. [2] DUAN X,WANG B,WANG Z,et al.CJRC:a reliable human-annotated benchmark dataset for Chinese judicial reading comprehension[C]//Proceedings of the Chinese Computational Linguistics:the 18th China National Conference,2019:439-451. [3] XIAO C,ZHONG H,GUO Z,et al.Cail2018:a large-scale legal dataset for judgment prediction[J].arXiv:1807. 02478,2018. [4] HU Z,LI X,TU C,et al.Few-shot charge prediction with discriminative legal attributes[C]//Proceedings of the 27th International Conference on Computational Linguistics.Association for Computational Linguistics,2018:487-498. [5] KIM M Y,XU Y,GOEBEL R,et al.Answering yes/no questions in legal bar exams[C]//Proceedings of the New Frontiers in Artificial Intelligence:JSAI-isAI 2013 Workshops,2014:199-213. [6] KIM M Y,XU Y,GOEBEL R.Legal question answering using ranking svm and syntactic/semantic similarity[C]//Proceedings of the New Frontiers in Artificial Intelligence:JSAI-isAI 2014 Workshops,2015:244-258. [7] TANIGUCHI R,KANO Y.Legal yes/no question answering system using case-role analysis[C]//Proceedings of the New Frontiers in Artificial Intelligence:JSAI-isAI 2016 Workshops,2017:284-298. [8] TANIGUCHI R,HOSHINO R,KANO Y.Legal question answering system using framenet[C]//Proceedings of the New Frontiers in Artificial Intelligence:JSAI-isAI 2018 Workshops,2019:193-206. [9] CARVALHO D S,NGUYEN M T,TRAN C X,et al.Lexical-morphological modeling for legal text analysis[J].arXiv:1609.00799,2016. [10] KIM M Y,XU Y,GOEBEL R.Applying a convolutional neural network to legal question answering[C]//Proceedings of the New Frontiers in Artificial Intelligence:JSAI-isAI 2015 Workshops,2017:282-294. [11] KIM M Y,LU Y,GOEBEL R.Textual entailment in legal bar exam question answering using deep siamese networks[C]//Proceedings of the New Frontiers in Artificial Intelligence:JSAI-isAI 2017 Workshops,2018:35-48. [12] MORIMOTO A,KUBO D,SATO M,et al.Legal question answering system using neural attention[C]//Proceedings of the COLIEE@ICAIL2017,2017:79-89. [13] GAIN B,BANDYOPADHYAY D,SAIKH T,et al.Iitp@ coliee 2019:legal information retrieval using BM25 and BERT[J].arXiv:2104.08653,2021. [14] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [15] YOSHIOKA M,AOKI Y,SUZUKI Y.BERT-based ensemble methods with data augmentation for legal textual entailment in COLIEE statute law task[C]//Proceedings of the 18th International Conference on Artificial Intelligence and Law,2021:278-284. [16] BENDER E M,GEBRU T,MCMILLAN-MAJOR A,et al.On the dangers of stochastic parrots:can language models be too big?[C]//Proceedings of the 2021 ACM Conference on Fairness,Accountability,and Transparency,2021:610-623. [17] NGUYEN H-T,VUONG H Y T,NGUYEN P M,et al.JNLP team:deep learning for legal processing in coliee 2020[J].arXiv:2011.08071,2020. [18] WU J,LUO X.Alignment-based graph network for judicial examination task[C]//Proceedings of the 14th International Conference on Knowledge Science,Engineering and Management,2021:386-400. [19] ZHONG H,XIAO C,TU C,et al.How does NLP benefit legal system:a summary of legal artificial intelligence[J].arXiv:2004.12158,2020. [20] 周倚文.面向法律领域的问答系统研究[D].长沙:湖南大学,2018. ZHOU Y W.The research of question answering system for law domain[D].Changsha:Hunan University,2018. [21] JOULIN A,GRAVE E,BOJANOWSKI P,et al.Fasttext.zip:compressing text classification models[J].arXiv:1612. 03651,2016. [22] 涂海,彭敦陆,陈章,等.S2SA-BiLSTM:面向法律纠纷智能问答系统的深度学习模型[J].小型微型计算机系统,2019,40(5):1034-1039. TU H,PENG D L,CHEN Z,et al.S2SA-BiLSTM:a deep learning model towards intelligent Q&A system for legal disputes[J].Journal of Chinese Computer Systems,2019,40(5):1034-1039. [23] GRAVES A,SCHMIDHUBER J.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks,2005,18(5/6):602-610. [24] 林智敏.基于深度学习的法律判决文书问答系统研究[D].重庆:重庆邮电大学,2021. LING Z M.Research on question answering system of legal judgment documents based on deep learning[D].Chongqing:Chongqing University of Posts and Telecommunications,2021. [25] VOLD A,CONRAD J G.Using transformers to improve answer retrieval for legal questions[C]//Proceedings of the 18th International Conference on Artificial Intelligence and Law,2021:245-249. [26] LIU Y,OTT M,GOYAL N,et al.Roberta:a robustly optimized bert pretraining approach[J].arXiv:1907. 11692,2019. [27] KHAZAELI S,PUNURU J,MORRIS C,et al.A free format legal question answering system[C]//Proceedings of the Natural Legal Language Processing Workshop,2021:107-113. [28] ROBERTSON S,ZARAGOZA H.The probabilistic relevance framework:BM25 and beyond[J].Foundations and Trends? in Information Retrieval,2009,3(4):333-389. [29] 刘依红,杨波,孙宇宁,等.基于BiLSTM的婚姻法自然语言问答[J].计算机工程与设计,2019,40(4):1190-1195. LIU Y H,YANG B,SUN Y N,et al.Q&A of natural language in marriage law based on BiLSTM[J].Computer Engineering and Design,2019,40(4):1190-1195. [30] HUANG W,JIANG J,QU Q,et al.AILA:a question answering system in the legal domain[C]//Proceedings of the IJCAI Conference,2020:5258-5260. [31] 杜何哲.融合知识图谱的林业法律法规问答系统研建[D].北京:北京林业大学,2020. DU H Z.Research and construction on a knowledge graph integrated question answering system of forestry laws and regulations[D].Beijing:Beijing Forestry University,2020. [32] 汪汇.基于法律知识图谱的自动问答系统[D].南京:南京大学,2021. WANG H.Automatic question answering system based on legal knowledge graph[D].Nanjing:Nanjing University,2021. [33] LAN Z,CHEN M,GOODMAN S,et al.AlBERT:a lite bert for self-supervised learning of language representations[J].arXiv:1909.11942,2019. [34] LAFFERTY J,MCCALLUM A,PEREIRA F.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the ICML 2001 Conference,2001. [35] 陈金菊,王义真,欧石燕.基于道路法规知识图谱的多轮自动问答研究[J].现代情报,2020,40(8):98-110. CHEN J J,WANG Y Z,OU S Y.Research on multi-round automatic question answering based on knowledge graph of road regulations[J].Journal of Modern Information,2020,40(8):98-110. [36] 黄辉.面向盗窃案件的智能问答方法研究及其应用[D].贵阳:贵州大学,2021. HUANG H.Research and application of intelligent question answering method for theft cases[D].Guiyang:Guizhou University,2021. [37] JIAO X,YIN Y,SHANG L,et al.TinyBERT:distilling bert for natural language understanding[J].arXiv:1909. 10351,2019. [38] CUI Y,CHE W,LIU T,et al.Pre-training with whole word masking for Chinese BERT[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:3504-3514. [39] SEO M,KEMBHAVI A,FARHADI A,et al.Bidirectional attention flow for machine comprehension[J].arXiv:1611.01603,2016. [40] 曾俊.抽取式中文机器阅读理解研究[D].武汉:华中师范大学,2020. ZENG J.Research of extractive Chinese machine reading comprehension[D].Wuhan:Central China Normal University,2020. [41] 谭红叶,屈保兴.面向多类型问题的阅读理解方法研究[J].中文信息学报,2020,34(6):81-88. TAN H Y,QU B X.An approach to multi-type question machine reading comprehension[J].Journal of Chinese Information Processing,2020,34(6):81-88. [42] 王寰,孙雷,吴斌,等.基于阅读理解智能问答的RPR融合模型研究[J].计算机应用研究,2021,39(3):1-8. WANG H,SUN L,WU B,et al.Research on RPR fusion model based on reading comprehension intelligent question answering[J].Application Research of Computers,2021,39(3):1-8. [43] 张虎,王宇杰,谭红叶,等.基于MHSA和句法关系增强的机器阅读理解方法研究[J].自动化学报,2022,48(11):2718-2728. ZHANG H,WANG Y J,TAN H Y,et al.Research on machine reading comprehension method based on MHSA and syntactic relations enhancement[J].Acta Automatica Sinica,2022,48(11):2718-2728. [44] 李芳芳,任星凯,毛星亮,等.基于多任务联合训练的法律文本机器阅读理解模型[J].中文信息学报,2021,35(7):109-117. LI F F,REN X K,MAO X L,et al.A reading comprehension model for judical texts based on multi task joint training[J].Journal of Chinese Information Processing,2021,35(7):109-117. [45] RAJPURKAR P,ZHANG J,LOPYREV K,et al.Squad:100,000+ questions for machine comprehension of text[J].arXiv:1606.05250,2016. [46] REDDY S,CHEN D,MANNING C D.CoQA:a conversational question answering challenge[J].Transactions of the Association for Computational Linguistics,2019,7:249-266. [47] HE W,LIU K,LIU J,et al.Dureader:a Chinese machine reading comprehension dataset from real-world applications[J].arXiv:1711.05073,2017. [48] YANG Z,QI P,ZHANG S,et al.HotpotQA:a dataset for diverse,explainable multi-hop question answering[J].arXiv:1809.09600,2018. [49] 闫凯峰.中文机器阅读理解系统的研究与实现[D].大庆:东北石油大学,2021. YAN K F.Research and implementation of Chinese machine reading comprehension system[D].Daqing:Northeast Petroleum University,2021. [50] 秦永彬,黄辉,王凯.司法机器阅读理解的优化策略研究[J].华中科技大学学报(自然科学版),2022,50(2):142-148. QIN Y B,HUANG H,WANG K,et al.Research on optimizing strategies of judicial machine reading comprehension[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(2):142-148. [51] DONG L,YANG N,WANG W,et al.Unified language model pre-training for natural language understanding and generation[C]//Advances in Neural Information Processing Systems,2019. [52] ZAHEER M,GURUGANESH G,DUBEY A,et al.Big bird:transformers for longer sequences[C]//Advances in Neural Information Processing Systems,2020:17283-17297. [53] BELTAGY I,PETERS M E,COHAN A.Longformer:the long-document transformer[J].arXiv:2004.05150,2020. [54] DAI Z,YANG Z,YANG Y,et al.Transformer-XL:attentive language models beyond a fixed-length context[J].arXiv:1901.02860,2019. [55] LIMSOPATHAM N.Effectively leveraging BERT for legal document classification[C]//Proceedings of the Natural Legal Language Processing Workshop,2021:210-216. [56] WANG S,YU M,CHANG S,et al.A co-matching model for multi-choice reading comprehension[J].arXiv:1806. 04068,2018. [57] ZHU H,WEI F,QIN B,et al.Hierarchical attention flow for multiple-choice reading comprehension[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [58] ZHONG H,GUO Z,TU C,et al.Legal judgment prediction via topological learning[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,2018:3540-3549. [59] YANG W,JIA W,ZHOU X,et al.Legal judgment prediction via multi-perspective bi-feedback network[J].arXiv:1905.03969,2019. [60] DONG Q,NIU S.Legal judgment prediction via relational learning[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval,2021:983-992. [61] LUO B,FENG Y,XU J,et al.Learning to predict charges for criminal cases with legal basis[J].arXiv:1707.09168,2017. [62] CHEN S,WANG P,FANG W,et al.Learning to predict charges for judgment with legal graph[C]//Proceedings of the Artificial Neural Networks and Machine Learning-ICANN 2019 Conference,2019:240-252. [63] XU N,WANG P,CHEN L,et al.Distinguish confusing law articles for legal judgment prediction[J].arXiv:2004.02557,2020. [64] YUE L,LIU Q,JIN B,et al.Neurjudge:a circumstance-aware neural framework for legal judgment prediction[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval,2021:973-982. [65] YUAN L,WANG J,FAN S,et al.Automatic legal judgment prediction via large amounts of criminal cases[C]//Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC),2019:2087-2091. [66] DOSHI-VELEZ F,KIM B.Towards a rigorous science of interpretable machine learning[J].arXiv:1702.08608,2017. [67] XU Z P,LI X,LI Y L,et al.Multi-task legal judgement prediction combining a subtask of the seriousness of charges[C]//Proceedings of the Chinese Computational Linguistics:the 19th China National Conference,2020:415-429. [68] 张博文.自动刑期预测及其可解释性研究[D].太原:山西大学,2020. ZHANG B W.Research on automatic penalty prediction and interpretability[D].Taiyuan:Shanxi University,2020. [69] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [70] BI B,LI C,WU C,et al.PALM:pretraining an autoencoding & autoregressive language model for context-conditioned generation[J].arXiv:2004.07159,2020. [71] SUN Y,WANG S,FENG S,et al.Ernie 3.0:large-scale knowledge enhanced pre-training for language understanding and generation[J].arXiv:2107.02137,2021. [72] 丛颖男,王兆毓,朱金清.关于法律人工智能数据和算法问题的若干思考[J].计算机科学,2022,49(4):74-79. CONG Y N,WANG Z Y,ZHU J Q.Insights into dataset and algorithm related problems in artificial intelligence for law[J].Computer Science,2022,49(4):74-79. [73] WEI J,ZOU K.EDA:easy data augmentation techniques for boosting performance on text classification tasks[J].arXiv:1901.11196,2019. [74] SUN Y,WANG S,LI Y,et al.Ernie:enhanced representation through knowledge integration[J].arXiv:1904. 09223,2019. [75] ZHONG H,ZHANG Z,LIU Z,et al.Open Chinese language pre-trained model zoo[R].2019. [76] XIAO C,HU X,LIU Z,et al.Lawformer:a pre-trained language model for Chinese legal long documents[J].AI Open,2021,2:79-84. [77] CLARK K,LUONG M T,LE Q V,et al.Electra:pre-training text encoders as discriminators rather than generators[J].arXiv:2003.10555,2020. [78] CHALKIDIS I,FERGADIOTIS M,MALAKASIOTIS P,et al.LEGAL-BERT:the muppets straight out of law school[J].arXiv:2010.02559,2020. [79] DOUKA S,ABDINE H,VAZIRGIANNIS M,et al.JuriBERT:a masked-language model adaptation for french legal text[J].arXiv:2110.01485,2021. [80] MASALA M,IACOB R C A,UBAN A S,et al.JurBERT:a romanian bert model for legal judgement prediction[C]//Proceedings of the Natural Legal Language Processing Workshop,2021:86-94. [81] WEI J,REN X,LI X,et al.NEZHA:neural contextualized representation for Chinese language understanding[J].arXiv:1909.00204,2019. [82] SU J,LU Y,PAN S,et al.RoFormer:enhanced transformer with rotary position embedding[J].arXiv:2104. 09864,2021. |
[1] | SUN Shukui, FAN Jing, LI Zhanwen, QU Jinshuai, LU Peidong. Survey of Artificial Intelligence in COVID-19 Pandemic [J]. Computer Engineering and Applications, 2023, 59(5): 28-39. |
[2] | WU Zhou, ZHANG Hongrui, ZHANG Haijun, SONG Qing. Summary of Research and Application of Neighborhood Field Optimization Algorithm [J]. Computer Engineering and Applications, 2022, 58(9): 1-8. |
[3] | CAI Qiming, ZHANG Lei, XU Chenhao. Research of Process Similarity Based on Single-Layer Neural Network [J]. Computer Engineering and Applications, 2022, 58(7): 295-302. |
[4] | CHEN Zhili, GAO Hao, PAN Yixuan, XING Feng. Review of Computer Aided Diagnosis Technology in Mammography [J]. Computer Engineering and Applications, 2022, 58(4): 1-21. |
[5] | JU Sibo, XU Jing, LI Yanfang. Text-to-Single Image Method Based on Self-Attention [J]. Computer Engineering and Applications, 2022, 58(3): 249-258. |
[6] | LIU Zhifei, CAO Lei, LAI Jun, CHEN Xiliang, CHEN Ying. Overview of Multi-Agent Path Finding [J]. Computer Engineering and Applications, 2022, 58(20): 43-64. |
[7] | WANG Ruiping, WU Shihong, ZHANG Meihang, WANG Xiaoping. Review of Language Processing Methods for Visual Question Answering [J]. Computer Engineering and Applications, 2022, 58(17): 50-60. |
[8] | WANG Hui, QI Qianqian, LI Xue, SUN Weijia, LIU Ying, YAO Chunli. Research Progress in Automatic Classification of Skin Lesions Image [J]. Computer Engineering and Applications, 2022, 58(16): 31-48. |
[9] | ZHANG Junpeng, JIANG Rui, SHI Yujie. Large-Scale Brain Models:Related Theories,Modeling Strategies and Typical Models [J]. Computer Engineering and Applications, 2022, 58(14): 51-62. |
[10] | ZENG Chunyan, YAN Kang, WANG Zhifeng, YU Yan, JI Chunmei. Survey of Interpretability Research on Deep Learning Models [J]. Computer Engineering and Applications, 2021, 57(8): 1-9. |
[11] | YANG Quan. SVM Algorithm for N1+N2 Structure Syntax Relation Determination [J]. Computer Engineering and Applications, 2021, 57(20): 104-108. |
[12] | KONG Songtao, LIU Chichi, SHI Yong, XIE Yi, WANG Kun. Review of Application Prospect of Deep Reinforcement Learning in Intelligent Manufacturing [J]. Computer Engineering and Applications, 2021, 57(2): 49-59. |
[13] | LOU Qihe, LIU Hu, XIE Xiangying, MA Xiaoguang. Short-Term Power Load Forecasting Using Cascaded LSTM Models [J]. Computer Engineering and Applications, 2021, 57(18): 275-280. |
[14] | XU Xialing, LIU Tao, TIAN Guohui, YU Wenjuan, XIAO Dajun, LIANG Shanpeng. Review of Occlusion Face Recognition Methods [J]. Computer Engineering and Applications, 2021, 57(17): 46-60. |
[15] | QIAN Wenbo, XIONG Jianbin, CEN Jian, WANG Qi, YU Dezheng, WU Runjie. Review of Fault Diagnosis of Building Electrical System [J]. Computer Engineering and Applications, 2021, 57(16): 27-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||