Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (14): 51-62.DOI: 10.3778/j.issn.1002-8331.2203-0149
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Junpeng, JIANG Rui, SHI Yujie
Online:
2022-07-15
Published:
2022-07-15
张军鹏,蒋睿,施玉杰
ZHANG Junpeng, JIANG Rui, SHI Yujie. Large-Scale Brain Models:Related Theories,Modeling Strategies and Typical Models[J]. Computer Engineering and Applications, 2022, 58(14): 51-62.
张军鹏, 蒋睿, 施玉杰. 大尺度大脑模型:相关理论,建模策略与典型模型[J]. 计算机工程与应用, 2022, 58(14): 51-62.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2203-0149
[1] ELIASMITH C,TRUJILLO O.The use and abuse of large-scale brain models[J].Current Opinion in Neurobiology,2014,25:1-6. [2] MARIEB E N,BRADY P M,MALLATT J B.Human anatomy[M].9th ed.[S.l.]:Pearson,2019. [3] SERENO M I,DIEDRICHSEN J,TACHROUNT M,et al.The human cerebellum has almost 80% of the surface area of the neocortex[J].Proceedings of the National Academy of Sciences,2020,117(32):19538-19543. [4] KNIGHT J C,NOWOTNY T.Larger GPU-accelerated brain simulations with procedural connectivity[J].Nature Computational Science,2021,1:136-142. [5] FREEMAN W J.Neurodynamics:an exploration in mesoscopic brain dynamics[M].London:Springer,2000. [6] KRIEGESKORTE N, DOUGLAS P K.Cognitive computational neuroscience[J].Nature Neuroscience,2018,21,1148-1160. [7] LEMOS N,DE LIMA L,DIAS A,et al.The anatomy of the brain-learned over the centuries[J].Surgical Neurology International,2021,12:319. [8] VAN ESSEN D C,DONAHUE C J,GLASSER M F.Development and evolution of cerebral and cerebellar cortex[J].Brain,Behavior and Evolution,2018,91:158-169. [9] STANDRING S.Gray’s anatomy e-book:the anatomical basis of clinical practice[M].[S.l.]:Elsevier Health Sciences,2020:442-453. [10] DENES G,PIZZAMIGLIO L.Handbook of clinical and experimental neuropsychology[M].London:Psychology Press,2020:525-570. [11] BERLUCCHI G,VALLAR G.The history of the neurophysiology and neurology of the parietal lobe[J].Handbook of Clinical Neurology,2018,151:3-30. [12] BAKER C M,BURKS J D,BRIGGS R G,et al.A connectomic atlas of the human cerebrum—chapter 9:the occipital lobe[J].Operative Neurosurgery,2018,15:372-406. [13] BORGHESANI V,NARVID J,BATTISTELLA G,et al.“Looks familiar,but I do not know who she is”:the role of the anterior right temporal lobe in famous face recognition[J].Cortex,2019,115:72-85. [14] JOBST B C,GONZALEZ-MARTINEZ J,ISNARD J,et al.The insula and its epilepsies[J].Epilepsy Currents,2019,19(1):11-21. [15] TAMURA T,CHEN W.Seamless healthcare monitoring[M].Berlin:Springer,2018:45-81. [16] WANG W.The broadband power shifts in entorhinal EEG are related to the firing of grid cells[J].Heliyon,2021,7(1):e06087. [17] DEMIR F,SOBAHI N,SIULY S,et al.Exploring deep learning features for automatic classification of human emotion using EEG rhythms[J].IEEE Sensors Journal,2021,21(13):14923-14930. [18] WAINIO-THEBERGE S,WOLFF A,NORTHOFF G.Dynamic relationships between spontaneous and evoked electrophysiological activity[J].Communications Biology,2021,4(1):1-17. [19] 赵文瑞,陈鑫源,雷旭.同步脑电-功能磁共振信号处理进展[J].信号处理,2018,34(8):930-942. ZHAO W R,CHEN X Y,LEI X.Advances in signal processing of simultaneous EEG-fMRI[J].Signal Processing,2018,34(8):930-942. [20] KEREN H,O’CALLAGHAN G,VIDAL-RIBAS P,et al.Reward processing in depression:a conceptual and meta-analytic review across fMRI and EEG studies[J].American Journal of Psychiatry,2018,175(11):1111-1120. [21] OGAWA S,LEE T M,KAY A R,et al.Brain magnetic resonance imaging with contrast dependent blood oxygenation[J].Proceedings of the National Academy of Sciences,1991,87(24):9868-9872. [22] KIM S G.Biophysics of BOLD fMRI investigated with animal models[J].Journal of Magnetic Resonance,2018,292:82-89. [23] 杨文晖.磁共振成像发展与超高场磁共振成像技术[J].物理,2019,48(4):227-236. YANG W H.The development of magnetic resonance imaging and ultra-high field magnetic resonance imaging technology[J].Physics,2019,48(4):227-236. [24] 高家红,雷皓,陈群,等.磁共振成像发展综述[J].中国科学:生命科学,2020,50(11):1285-1295. GAO J H,LEI H,CHEN Q,et al.Review of magnetic resonance imaging development[J].Science in China:Life Sciences,2020,50(11):1285-1295. [25] 付君言,曾延玮,张军.弥散张量成像在癫痫中的研究进展[J].中国医学计算机成像杂志,2020,26(2):197-200. FU J Y,ZENG Y W,ZHANG J.A review of diffusion tensor imaging in epilepsy[J].Chinese Journal of Medical Computer Imaging,2020,26(2):197-200. [26] SOARES J,MARQUES P,ALVES V,et al.A hitchhiker’s guide to diffusion tensor imaging[J].Frontiers in Neuroscience,2013,7:31. [27] CHURCHLAND P S.Computational neuroscience[J].Computational Neuroence,1988,241(4871):1299-1306. [28] GERSTNER W,KISTLER W M,NAUD R,et al.Neuronal dynamics:from single neurons to networks and models of cognition[M].Cambridge,UK:Cambridge University Press,2014. [29] WANG X J,HU H,HUANG C,et al.Computational neuroscience:a frontier of the 21st century[J].National Science Review,2020(9):9. [30] HODGKIN A L,HUXLEY A F.A quantitative description of membrane current and its application to conduction and excitation in nerve.[J].Journal of Physiology,1952,117(4):500. [31] ZHU Z,WANG R,ZHU F.The energy coding of a structural neural network based on the Hodgkin-Huxley model[J].Frontiers in Neuroscience,2018,12:122. [32] IM C,JUN S C.Development of new deep neural network architecture based on Hodgkin Huxley model[J].Brain Stimulation:Basic,Translational,and Clinical Research in Neuromodulation,2021,14(6):1691. [33] HU X,LIU C.Dynamic property analysis and circuit implementation of simplified memristive Hodgkin-Huxley neuron model[J].Nonlinear Dynamics,2019,97(2):1721-1733. [34] MOBILLE Z,ROSA E,RUTHERFORD G H,et al.Analog implementation of a Hodgkin-Huxley model neuron[J].American Journal of Physics,2020,88(11):918. [35] 王如彬.神经动力学研究进展[J].动力学与控制学报,2020,18(1):1-5. WANG R B.Research advances in neurodynamics[J].Journal of Dynamics and Control,2020,18(1):1-5. [36] PESARAN B,VINCK M,EINEVOLL G T,et al.Investigating large-scale brain dynamics using field potential recordings:analysis and interpretation[J].Nature Neuroscience,2018,21(7):903-919. [37] TIAN Y,LI G,SUN P,et al.Bridging the information and dynamics attributes of neural activities[J].Physical Review Research,2021,3(4):043085. [38] CORINTO F,TORCINI A.Nonlinear dynamics in computational neuroscience[M].[S.l.]:Springer International Publishing,2019:1-16. [39] DESCHLE N,IGNACIO GOSSN J,TEWARIE P,et al.On the validity of neural mass models[J].Frontiers in Computational Neuroscience,2021,14:118. [40] SCHIRNER M,MCINTOSH A R,JIRSA V,et al.Inferring multi-scale neural mechanisms with brain network modelling[J].Elife,2018,7:e28927. [41] SPORNS O.Graph theory methods:applications in brain networks[J].Dialogues in Clinical Neuroscience,2018,20(2):111. [42] SIEGENFELD A F,BAR-YAM Y.An introduction to complex systems science and its applications[J].Complexity,2020,2020:16-33. [43] TURNBULL L,HüTT M T,IOANNIDES A A,et al.Connectivity and complex systems:learning from a multi-disciplinary perspective[J].Applied Network Science,2018,3(1):1-49. [44] IZHIKEVICH E M,EDELMAN G M.Large-scale model of mammalian thalamocortical systems[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(9):3593-3598. [45] WEINSTEIN D,KINDLMANN G,LUNDBERG E.Tensorlines:advection-diffusion based propagation through diffusion tensor fields[C]//Proceedings Visualization’99,1999:249-530. [46] MORI S,ZIJL P.Fiber tracking:principles and strategies-a technical review.[J].NMR in Biomedicine,2002,15(7/8):468-480. [47] SALLES A,BJAALIE J G,EVERS K,et al.The human brain project:responsible brain research for the benefit of society[J].Neuron,2019,101(3):380-384. [48] BJERKE I E,?VSTHUS M,PAPP E A,et al.Data integration through brain atlasing:human brain project tools and strategies[J].European Psychiatry,2018,50:70-76. [49] EINEVOLL G T,DESTEXHE A,DIESMANN M,et al.The scientific case for brain simulations[J].Neuron,2019,102(4):735-744. [50] ABADíA I,NAVEROS F,ROS E,et al.A cerebellar-based solution to the nondeterministic time delay problem in robotic control[J].Science Robotics,2021,6(58):eabf2756. [51] CASALI S,MARENZI E,MEDINI C,et al.Reconstruction and simulation of a scaffold model of the cerebellar network[J].Frontiers in Neuroinformatics,2019:37. [52] SCHIRNER M,DOMIDE L,PERDIKIS D,et al.Brain simulation as a cloud service:the virtual brain on EBRAINS[J].NeuroImage,2022,251:118973. [53] LEON P S,KNOCK S A,WOODMAN M,et al.The virtual brain:a simulator of primate brain network dynamics[J].Frontiers in Neuroinformatics,2013,7:10. [54] SANZ-LEON P,KNOCK S A,SPIEGLER A,et al.Mathematical framework for large-scale brain network modeling in the virtual brain[J].NeuroImage,2015,111:385-430. [55] HASHEMI M,VATTIKONDA A N,SIP V,et al.The Bayesian virtual epileptic patient:a probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread[J].NeuroImage,2020,217:116839. [56] BINGHAM E,CHEN J P,JANKOWIAK M,et al.Pyro:deep universal probabilistic programming[J].The Journal of Machine Learning Research,2019,20(1):973-978. [57] HOFFMAN M D,GELMAN A.The No-U-Turn sampler:adaptively setting path lengths in Hamiltonian Monte Carlo[J].The Journal of Machine Learning Research,2014,15(1):1593-1623. [58] KUCUKELBIR A,TRAN D,RANGANATH R,et al.Automatic differentiation variational inference[J].Journal of Machine Learning Research,2017,18(1):430-474. [59] BLEI D M,KUCUKELBIR A,MCAULIFFE J D.Variational inference:a review for statisticians[J].Journal of the American statistical Association,2017,112(518):859-877. [60] LUO Y,AL-HARBI K.Performances of LOO and WAIC as IRT model selection methods[J].Psychological Test and Assessment Modeling,2017,59(2):183. [61] ZHANG G,CUI Y,ZHANG Y,et al.Computational exploration of dynamic mechanisms of steady state visual evoked potentials at the whole brain level[J].NeuroImage,2021,237(2):118166. [62] DECO G,MCINTOSH A R,SHEN K,et al.Identification of optimal structural connectivity using functional connectivity and neural modeling[J].The Journal of Neuroscience,2014,34(23):7910-7916. [63] BURT J B,MURAT D,ECKNER W J,et al.Hierarchy of transcriptomic specialization across human cortex captured by myelin map topography[J].Nature Neuroscience,2018,21(9):1251-1259. [64] DEMIRTA? M,BURT J B,HELMER M,et al.Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics[J].Neuron,2019,101(6):1181-1194. [65] GREIG L C,WOODWORTH M B,GALAZO M J,et al.Molecular logic of neocortical projection neuron specification,development and diversity[J].Nature Reviews Neuroscience,2013,14(11):755-769. [66] MILLER D J,BHADURI A,SESTAN N,et al.Shared and derived features of cellular diversity in the human cerebral cortex[J].Current Opinion in Neurobiology,2019,56:117-124. [67] D’SOUZA R D,BURKHALTER A.A laminar organization for selective cortico-cortical communication[J].Frontiers in Neuroanatomy,2017,11:71. |
[1] | WU Zhou, ZHANG Hongrui, ZHANG Haijun, SONG Qing. Summary of Research and Application of Neighborhood Field Optimization Algorithm [J]. Computer Engineering and Applications, 2022, 58(9): 1-8. |
[2] | CAI Qiming, ZHANG Lei, XU Chenhao. Research of Process Similarity Based on Single-Layer Neural Network [J]. Computer Engineering and Applications, 2022, 58(7): 295-302. |
[3] | CHEN Zhili, GAO Hao, PAN Yixuan, XING Feng. Review of Computer Aided Diagnosis Technology in Mammography [J]. Computer Engineering and Applications, 2022, 58(4): 1-21. |
[4] | JU Sibo, XU Jing, LI Yanfang. Text-to-Single Image Method Based on Self-Attention [J]. Computer Engineering and Applications, 2022, 58(3): 249-258. |
[5] | ZENG Chunyan, YAN Kang, WANG Zhifeng, YU Yan, JI Chunmei. Survey of Interpretability Research on Deep Learning Models [J]. Computer Engineering and Applications, 2021, 57(8): 1-9. |
[6] | YANG Quan. SVM Algorithm for N1+N2 Structure Syntax Relation Determination [J]. Computer Engineering and Applications, 2021, 57(20): 104-108. |
[7] | KONG Songtao, LIU Chichi, SHI Yong, XIE Yi, WANG Kun. Review of Application Prospect of Deep Reinforcement Learning in Intelligent Manufacturing [J]. Computer Engineering and Applications, 2021, 57(2): 49-59. |
[8] | LOU Qihe, LIU Hu, XIE Xiangying, MA Xiaoguang. Short-Term Power Load Forecasting Using Cascaded LSTM Models [J]. Computer Engineering and Applications, 2021, 57(18): 275-280. |
[9] | XU Xialing, LIU Tao, TIAN Guohui, YU Wenjuan, XIAO Dajun, LIANG Shanpeng. Review of Occlusion Face Recognition Methods [J]. Computer Engineering and Applications, 2021, 57(17): 46-60. |
[10] | QIAN Wenbo, XIONG Jianbin, CEN Jian, WANG Qi, YU Dezheng, WU Runjie. Review of Fault Diagnosis of Building Electrical System [J]. Computer Engineering and Applications, 2021, 57(16): 27-39. |
[11] | LI Zhi, WANG Zhen, YANG Fugeng, Xi Xuefeng. Research and Prospect of Automatic Question Answer Based on Table [J]. Computer Engineering and Applications, 2021, 57(13): 67-76. |
[12] | WANG Youfa, CHEN Hui, LUO Jianqiang. Research Hotspots and Cutting-Edge Mining of Artificial Intelligence [J]. Computer Engineering and Applications, 2021, 57(12): 46-53. |
[13] | LIU Chun, WU Yiheng. Research on Neural Network Method for Depth Estimation Based on Two-Way Fusion [J]. Computer Engineering and Applications, 2020, 56(20): 138-145. |
[14] | WANG Hui, LI Yingshun. Dynamic Fault Diagnosis Algorithm for Improved Evidence Update Rules [J]. Computer Engineering and Applications, 2020, 56(2): 261-265. |
[15] | SUN Xiaohu, LI Hongjun. Overview of Speech Emotion Recognition [J]. Computer Engineering and Applications, 2020, 56(11): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||